1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
##############################################################################
#
# Copyright (c) 2003-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
from __future__ import print_function, division
__copyright__="""Copyright (c) 2003-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
"""
test for util operations for reduction operations with tagged data
:remark: use see `test_util`
:var __author__: name of author
:var __copyright__: copyrights
:var __license__: licence agreement
:var __url__: url entry point on documentation
:var __version__: version
:var __date__: date of the version
"""
__author__="Joel Fenwick, joelfenwick@uq.edu.au"
import esys.escriptcore.utestselect as unittest
import numpy
from esys.escript import *
from test_util_base import Test_util_base, Test_util_values
def zero_to_nan(obj):
f=1./obj
return f/f
def zero_to_inf(obj):
return 1./obj
class Test_util_reduction_new(Test_util_base, Test_util_values):
def test_Lsup_new(self):
supportcplx=True
opstring="Lsup(a)"
misccheck="isinstance(res,float)"
oraclecheck="abs(ref).max()"
opname="Lsup"
update1="max(abs(r).max(),abs(r2).max())"
self.generate_operation_test_batch(supportcplx, opstring, misccheck, oraclecheck, opname, update1)
def test_sup_new(self):
supportcplx=False
opstring="sup(a)"
misccheck="isinstance(res,float)"
oraclecheck="ref.max()"
opname="sup"
update1="max(r.max(), r2.max())"
self.generate_operation_test_batch(supportcplx, opstring, misccheck, oraclecheck, opname, update1)
def test_inf_new(self):
supportcplx=False
opstring="inf(a)"
misccheck="isinstance(res,float)"
oraclecheck="ref.min()"
opname="inf"
update1="min(r.min(),r2.min())"
self.generate_operation_test_batch(supportcplx, opstring, misccheck, oraclecheck, opname, update1)
@unittest.skipIf(not hasFeature('NAN_CHECK'), "test only fires if NAN_CHECK is enabled")
def test_hasNaN(self):
# Need to check for hasNaN as well
supportcplx=True
opstring="a.hasNaN()"
misccheck=None
oraclecheck="0 in ref"
opname="hasNaN"
update1="bool(numpy.isnan(r).max()) or bool(numpy.isnan(r2).max())" # numpy.bool_ is not bool
self.generate_operation_test_batch(supportcplx, opstring, misccheck, oraclecheck, opname, update1, input_trans=zero_to_nan, no_scalars=True)
# It would be a bit tricky to reformulate this into the new form
# This will not test all possible type combinations
@unittest.skipIf(not hasFeature('NAN_CHECK'), "test only fires if NAN_CHECK is enabled")
def test_NaNReduction_constData_rank4(self):
oarg=Data(numpy.array([[[[0.50544713768476202, 0.96922321849050874, -0.81524480218696649, -0.36499730379849193],
[-0.48131882706974372, 0.026812357207576465, 0.090903267401989618, -0.24742363369877829], [-0.51631372893805438,
0.30410275437953183, -0.75149566289642533, -0.19930300338453599]], [[0.82034878499482788, -0.70904661587698792,
-0.27637223434426073, -0.34818734117560401], [0.11686048779802416, -0.76746266142163178, -0.75578186306174833,
0.14509316330390232], [0.1590050723141736, 0.69684384552537937, -0.58747105640080832, -0.28640840371441523]]],
[[[0.14956532194045669, 0.081514192262221119, 0.32061383569406399, -0.2444346881437609], [0.79564139071785278,
-0.5456680167461434, 0.24722978802719742, 0.28286130725068315], [0.10385207763921711, -0.064749181840278336,
0.21325254547672734, -0.71875644540473838]], [[0.58552496009870802, 0.35472373485671338, -0.18411162994671826,
0.71609038134967773], [-0.20966804574945064, -0.49286619989346314, 0.85116051808632553, -0.94417114370961075],
[-0.40434528979823714, 0.62250343758157611, 0.64860074098639742, 0.0043146814280992096]]], [[[-0.14242849200713259,
0.42551908502898095, 0.7691157770973962, -0.37595641162856674], [0.026655444032149589, -0.82186407521644167,
0.40285091480648783, -0.53328831035315982], [-0.12887729257054481, 0.75610663428133451, 0.022049613835531723,
0.59949338706293043]], [[-0.34506254315071772, 0.019719877473602043, 0.10216765908478709, 0.022681548062032153],
[0.2228614880408597, 0.26944547311401901, -0.10122095357202965, -0.51019076850180589], [-0.081439546799124463,
0.18829632566943544, 0.12366885442775377, 0]]]]),self.functionspace)
arg=1/oarg #will get us an inf
arg=arg/arg #will give a NaN in the last position, yes we could have just sqrt(arg) but I wanted last pos
self.assertTrue(numpy.isnan(sup(arg)),"wrong result")
self.assertTrue(numpy.isnan(inf(arg)),"wrong result")
self.assertTrue(numpy.isnan(Lsup(arg)),"wrong result")
arg=(1+0j)/oarg
arg=arg/arg #will give a NaN in the last position, yes we could have just sqrt(arg) but I wanted last pos
self.assertRaises(RuntimeError,sup, arg)
self.assertRaises(RuntimeError,inf, arg)
self.assertTrue(numpy.isnan(Lsup(arg)),"wrong result")
# Now testing tagged
arg.tag()
self.assertRaises(RuntimeError,sup, arg)
self.assertRaises(RuntimeError,inf, arg)
self.assertTrue(numpy.isnan(Lsup(arg)),"wrong result")
@unittest.skipIf(not hasFeature('NAN_CHECK'), "test only fires if NAN_CHECK is enabled")
def test_NaNReduction_expandedData_rank4(self):
oarg=Data(numpy.array([[[[0.50544713768476202, 0.96922321849050874, -0.81524480218696649, -0.36499730379849193],
[-0.48131882706974372, 0.026812357207576465, 0.090903267401989618, -0.24742363369877829], [-0.51631372893805438,
0.30410275437953183, -0.75149566289642533, -0.19930300338453599]], [[0.82034878499482788, -0.70904661587698792,
-0.27637223434426073, -0.34818734117560401], [0.11686048779802416, -0.76746266142163178, -0.75578186306174833,
0.14509316330390232], [0.1590050723141736, 0.69684384552537937, -0.58747105640080832, -0.28640840371441523]]],
[[[0.14956532194045669, 0.081514192262221119, 0.32061383569406399, -0.2444346881437609], [0.79564139071785278,
-0.5456680167461434, 0.24722978802719742, 0.28286130725068315], [0.10385207763921711, -0.064749181840278336,
0.21325254547672734, -0.71875644540473838]], [[0.58552496009870802, 0.35472373485671338, -0.18411162994671826,
0.71609038134967773], [-0.20966804574945064, -0.49286619989346314, 0.85116051808632553, -0.94417114370961075],
[-0.40434528979823714, 0.62250343758157611, 0.64860074098639742, 0.0043146814280992096]]], [[[-0.14242849200713259,
0.42551908502898095, 0.7691157770973962, -0.37595641162856674], [0.026655444032149589, -0.82186407521644167,
0.40285091480648783, -0.53328831035315982], [-0.12887729257054481, 0.75610663428133451, 0.022049613835531723,
0.59949338706293043]], [[-0.34506254315071772, 0.019719877473602043, 0.10216765908478709, 0.022681548062032153],
[0.2228614880408597, 0.26944547311401901, -0.10122095357202965, -0.51019076850180589], [-0.081439546799124463,
0.18829632566943544, 0.12366885442775377, 0]]]]),self.functionspace, True)
arg=1/oarg #will get us an inf
arg=arg/arg #will give a NaN in the last position, yes we could have just sqrt(arg) but I wanted last pos
self.assertTrue(numpy.isnan(sup(arg)),"wrong result")
self.assertTrue(numpy.isnan(inf(arg)),"wrong result")
self.assertTrue(numpy.isnan(Lsup(arg)),"wrong result")
oarg.resolve() # to prevent autolazy and complex interfering
arg=(1+0j)/oarg
arg.resolve() # to prevent autolazy and complex interfering
arg=arg/arg #will give a NaN in the last position, yes we could have just sqrt(arg) but I wanted last pos
self.assertRaises(RuntimeError,sup, arg)
self.assertRaises(RuntimeError,inf, arg)
self.assertTrue(numpy.isnan(Lsup(arg)),"wrong result")
def test_hasInf(self):
# Need to check for hasNaN as well
supportcplx=True
opstring="a.hasInf()"
misccheck=None
oraclecheck="0 in ref"
opname="hasInf"
update1="bool(numpy.isinf(r).max()) or bool(numpy.isinf(r2).max())" # numpy.bool_ is not bool
self.generate_operation_test_batch(supportcplx, opstring, misccheck, oraclecheck, opname, update1, input_trans=zero_to_inf, no_scalars=True)
# It would be a bit tricky to reformulate this into the new form
# This will not test all possible type combinations
def test_InfReduction_constData_rank4(self):
oarg=Data(numpy.array([[[[0.50544713768476202, 0.96922321849050874, -0.81524480218696649, -0.36499730379849193],
[-0.48131882706974372, 0.026812357207576465, 0.090903267401989618, -0.24742363369877829], [-0.51631372893805438,
0.30410275437953183, -0.75149566289642533, -0.19930300338453599]], [[0.82034878499482788, -0.70904661587698792,
-0.27637223434426073, -0.34818734117560401], [0.11686048779802416, -0.76746266142163178, -0.75578186306174833,
0.14509316330390232], [0.1590050723141736, 0.69684384552537937, -0.58747105640080832, -0.28640840371441523]]],
[[[0.14956532194045669, 0.081514192262221119, 0.32061383569406399, -0.2444346881437609], [0.79564139071785278,
-0.5456680167461434, 0.24722978802719742, 0.28286130725068315], [0.10385207763921711, -0.064749181840278336,
0.21325254547672734, -0.71875644540473838]], [[0.58552496009870802, 0.35472373485671338, -0.18411162994671826,
0.71609038134967773], [-0.20966804574945064, -0.49286619989346314, 0.85116051808632553, -0.94417114370961075],
[-0.40434528979823714, 0.62250343758157611, 0.64860074098639742, 0.0043146814280992096]]], [[[-0.14242849200713259,
0.42551908502898095, 0.7691157770973962, -0.37595641162856674], [0.026655444032149589, -0.82186407521644167,
0.40285091480648783, -0.53328831035315982], [-0.12887729257054481, 0.75610663428133451, 0.022049613835531723,
0.59949338706293043]], [[-0.34506254315071772, 0.019719877473602043, 0.10216765908478709, 0.022681548062032153],
[0.2228614880408597, 0.26944547311401901, -0.10122095357202965, -0.51019076850180589], [-0.081439546799124463,
0.18829632566943544, 0.12366885442775377, 0]]]]),self.functionspace)
arg=1/oarg #will get us an inf
self.assertTrue(numpy.isinf(sup(arg)),"wrong result")
self.assertTrue(numpy.isinf(Lsup(arg)),"wrong result")
arg=(1+1j)/oarg # Why not just 1+0j? ... because that gives inf+nanJ ... Just don't
self.assertRaises(RuntimeError,sup, arg)
self.assertRaises(RuntimeError,inf, arg)
self.assertTrue(numpy.isinf(Lsup(arg)),"wrong result")
# Now testing tagged
arg.tag()
self.assertRaises(RuntimeError,sup, arg)
self.assertRaises(RuntimeError,inf, arg)
self.assertTrue(numpy.isinf(Lsup(arg)),"wrong result")
def test_InfReduction_expandedData_rank4(self):
# Have not actually worked on this bit yet
oarg=Data(numpy.array([[[[0.50544713768476202, 0.96922321849050874, -0.81524480218696649, -0.36499730379849193],
[-0.48131882706974372, 0.026812357207576465, 0.090903267401989618, -0.24742363369877829], [-0.51631372893805438,
0.30410275437953183, -0.75149566289642533, -0.19930300338453599]], [[0.82034878499482788, -0.70904661587698792,
-0.27637223434426073, -0.34818734117560401], [0.11686048779802416, -0.76746266142163178, -0.75578186306174833,
0.14509316330390232], [0.1590050723141736, 0.69684384552537937, -0.58747105640080832, -0.28640840371441523]]],
[[[0.14956532194045669, 0.081514192262221119, 0.32061383569406399, -0.2444346881437609], [0.79564139071785278,
-0.5456680167461434, 0.24722978802719742, 0.28286130725068315], [0.10385207763921711, -0.064749181840278336,
0.21325254547672734, -0.71875644540473838]], [[0.58552496009870802, 0.35472373485671338, -0.18411162994671826,
0.71609038134967773], [-0.20966804574945064, -0.49286619989346314, 0.85116051808632553, -0.94417114370961075],
[-0.40434528979823714, 0.62250343758157611, 0.64860074098639742, 0.0043146814280992096]]], [[[-0.14242849200713259,
0.42551908502898095, 0.7691157770973962, -0.37595641162856674], [0.026655444032149589, -0.82186407521644167,
0.40285091480648783, -0.53328831035315982], [-0.12887729257054481, 0.75610663428133451, 0.022049613835531723,
0.59949338706293043]], [[-0.34506254315071772, 0.019719877473602043, 0.10216765908478709, 0.022681548062032153],
[0.2228614880408597, 0.26944547311401901, -0.10122095357202965, -0.51019076850180589], [-0.081439546799124463,
0.18829632566943544, 0.12366885442775377, 0]]]]),self.functionspace, True)
arg=1/oarg #will get us an inf
self.assertTrue(numpy.isinf(sup(arg)),"wrong result")
self.assertTrue(numpy.isinf(Lsup(arg)),"wrong result")
oarg.resolve() # to prevent autolazy and complex interfering
arg=(1+1j)/oarg
arg.resolve() # to prevent autolazy and complex interfering
self.assertRaises(RuntimeError,sup, arg)
self.assertRaises(RuntimeError,inf, arg)
self.assertTrue(numpy.isinf(Lsup(arg)),"wrong result")
|