1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
|
/*****************************************************************************
*
* Copyright (c) 2003-2020 by The University of Queensland
* http://www.uq.edu.au
*
* Primary Business: Queensland, Australia
* Licensed under the Apache License, version 2.0
* http://www.apache.org/licenses/LICENSE-2.0
*
* Development until 2012 by Earth Systems Science Computational Center (ESSCC)
* Development 2012-2013 by School of Earth Sciences
* Development from 2014-2017 by Centre for Geoscience Computing (GeoComp)
* Development from 2019 by School of Earth and Environmental Sciences
**
*****************************************************************************/
#include "Assemble.h"
#ifdef ESYS_HAVE_PASO
#include <paso/SystemMatrix.h>
#endif
#ifdef ESYS_HAVE_TRILINOS
#include <trilinoswrap/TrilinosMatrixAdapter.h>
using esys_trilinos::TrilinosMatrixAdapter;
#endif
namespace finley {
using escript::DataTypes::real_t;
using escript::DataTypes::cplx_t;
#ifdef ESYS_HAVE_PASO
static void addToSystemMatrixPasoCSC(paso::SystemMatrix<double>* S, int NN_Equa,
const index_t* Nodes_Equa, int num_Equa,
int NN_Sol, const index_t* Nodes_Sol,
int num_Sol, const real_t* array);
template <typename T>
static void addToSystemMatrixPasoCSR(paso::SystemMatrix<T>* S, int NN_Equa,
const index_t* Nodes_Equa, int num_Equa,
int NN_Sol, const index_t* Nodes_Sol,
int num_Sol, const T* array);
#endif
template<>
void Assemble_addToSystemMatrix<real_t>(escript::ASM_ptr S, int NN_Equa,
const index_t* Nodes_Equa, int num_Equa,
int NN_Sol, const index_t* Nodes_Sol,
int num_Sol, const real_t* array)
{
#ifdef ESYS_HAVE_PASO
paso::SystemMatrix<real_t>* pmat = dynamic_cast<paso::SystemMatrix<real_t>*>(S.get());
if (pmat) {
// call the right function depending on storage type
if (pmat->type & MATRIX_FORMAT_CSC) {
addToSystemMatrixPasoCSC(pmat, NN_Equa, Nodes_Equa,
num_Equa, NN_Sol, Nodes_Sol,
num_Sol, array);
} else { // type == CSR
addToSystemMatrixPasoCSR(pmat, NN_Equa, Nodes_Equa,
num_Equa, NN_Sol, Nodes_Sol,
num_Sol, array);
}
return;
}
#endif
#ifdef ESYS_HAVE_TRILINOS
TrilinosMatrixAdapter* tmat(dynamic_cast<TrilinosMatrixAdapter*>(S.get()));
if (tmat) {
IndexVector rowIdx(Nodes_Equa, Nodes_Equa+NN_Equa);
//IndexVector colIdx(Nodes_Sol, Nodes_Sol+NN_Sol);
std::vector<real_t> arr(array, array+(NN_Equa*NN_Sol*num_Sol*num_Equa));
tmat->add(rowIdx, arr);
return;
}
#endif
throw FinleyException("Assemble_addToSystemMatrix: unknown system "
"matrix type.");
}
template<>
void Assemble_addToSystemMatrix<cplx_t>(escript::ASM_ptr S, int NN_Equa,
const index_t* Nodes_Equa, int num_Equa,
int NN_Sol, const index_t* Nodes_Sol,
int num_Sol, const cplx_t* array)
{
#ifdef ESYS_HAVE_MUMPS
paso::SystemMatrix<cplx_t>* pmat = dynamic_cast<paso::SystemMatrix<cplx_t>*>(S.get());
if (pmat) {
if (pmat->type & (MATRIX_FORMAT_OFFSET1 + MATRIX_FORMAT_BLK1)) {
addToSystemMatrixPasoCSR(pmat, NN_Equa, Nodes_Equa,
num_Equa, NN_Sol, Nodes_Sol,
num_Sol, array);
} else {
throw FinleyException("addToSystemMatrix: MUMPS requires CSR format with "
"index offset 1 and block size 1.");
}
return;
}
#endif
#ifdef ESYS_HAVE_TRILINOS
TrilinosMatrixAdapter* tmat = dynamic_cast<TrilinosMatrixAdapter*>(S.get());
if (tmat) {
IndexVector rowIdx(Nodes_Equa, Nodes_Equa+NN_Equa);
//IndexVector colIdx(Nodes_Sol, Nodes_Sol+NN_Sol);
std::vector<cplx_t> arr(array, array+(NN_Equa*NN_Sol*num_Sol*num_Equa));
tmat->add(rowIdx, arr);
return;
}
#endif
throw FinleyException("addToSystemMatrix: only Trilinos matrices support "
"complex-valued assembly!");
}
#ifdef ESYS_HAVE_PASO
void addToSystemMatrixPasoCSC(paso::SystemMatrix<double>* in, int NN_Equa,
const index_t* Nodes_Equa, int num_Equa,
int NN_Sol, const index_t* Nodes_Sol,
int num_Sol, const real_t* array)
{
const int index_offset = (in->type & MATRIX_FORMAT_OFFSET1 ? 1 : 0);
const int row_block_size = in->row_block_size;
const int col_block_size = in->col_block_size;
const int block_size = in->block_size;
const int num_subblocks_Equa = num_Equa/row_block_size;
const int num_subblocks_Sol = num_Sol/col_block_size;
const dim_t numMyCols = in->pattern->mainPattern->numInput;
const dim_t numMyRows = in->pattern->mainPattern->numOutput;
const index_t* mainBlock_ptr = in->mainBlock->pattern->ptr;
const index_t* mainBlock_index = in->mainBlock->pattern->index;
real_t* mainBlock_val = in->mainBlock->val;
const index_t* col_coupleBlock_ptr = in->col_coupleBlock->pattern->ptr;
const index_t* col_coupleBlock_index = in->col_coupleBlock->pattern->index;
real_t* col_coupleBlock_val = in->col_coupleBlock->val;
//const index_t* row_coupleBlock_ptr = in->row_coupleBlock->pattern->ptr;
const index_t* row_coupleBlock_index = in->row_coupleBlock->pattern->index;
real_t* row_coupleBlock_val = in->row_coupleBlock->val;
for (int k_Sol = 0; k_Sol < NN_Sol; ++k_Sol) {
// Down columns of array
const index_t j_Sol = Nodes_Sol[k_Sol];
for (int l_col = 0; l_col < num_subblocks_Sol; ++l_col) {
const index_t i_col = j_Sol * num_subblocks_Sol + l_col;
if (i_col < numMyCols) {
for (int k_Equa = 0; k_Equa < NN_Equa; ++k_Equa) {
// Across cols of array
const index_t j_Equa = Nodes_Equa[k_Equa];
for (int l_row = 0; l_row < num_subblocks_Equa; ++l_row) {
const index_t i_row = j_Equa*num_subblocks_Equa+index_offset+l_row;
if (i_row < numMyRows + index_offset ) {
for (index_t k = mainBlock_ptr[i_col]-index_offset;
k < mainBlock_ptr[i_col + 1]-index_offset; ++k) {
if (mainBlock_index[k] == i_row) {
// Entry array(k_Equa, j_Sol) is a block
// (col_block_size x col_block_size)
for (int ic = 0; ic < col_block_size; ++ic) {
const int i_Sol = ic + col_block_size * l_col;
for (int ir = 0; ir < row_block_size; ++ir) {
const int i_Eq = ir + row_block_size * l_row;
mainBlock_val[k*block_size + ir + row_block_size*ic] +=
array[INDEX4
(i_Eq, i_Sol, k_Equa, k_Sol, num_Equa, num_Sol, NN_Equa)];
}
}
break;
}
}
} else {
for (index_t k = col_coupleBlock_ptr[i_col]-index_offset;
k < col_coupleBlock_ptr[i_col + 1]-index_offset; ++k) {
if (row_coupleBlock_index[k] == i_row - numMyRows) {
for (int ic = 0; ic < col_block_size; ++ic) {
const int i_Sol = ic + col_block_size * l_col;
for (int ir = 0; ir < row_block_size; ++ir) {
const int i_Eq = ir + row_block_size * l_row;
row_coupleBlock_val[k*block_size + ir + row_block_size*ic] +=
array[INDEX4
(i_Eq, i_Sol, k_Equa, k_Sol, num_Equa, num_Sol, NN_Equa)];
}
}
break;
}
}
}
}
}
} else { // i_col >= numMyCols
for (int k_Equa = 0; k_Equa < NN_Equa; ++k_Equa) {
// Across rows of array
const index_t j_Equa = Nodes_Equa[k_Equa];
for (int l_row = 0; l_row < num_subblocks_Equa; ++l_row) {
const index_t i_row = j_Equa * num_subblocks_Equa + index_offset + l_row;
if (i_row < numMyRows + index_offset) {
for (index_t k = col_coupleBlock_ptr[i_col-numMyCols]-index_offset;
k < col_coupleBlock_ptr[i_col - numMyCols + 1] - index_offset; ++k) {
if (col_coupleBlock_index[k] == i_row) {
for (int ic = 0; ic < col_block_size; ++ic) {
const int i_Sol = ic + col_block_size * l_col;
for (int ir = 0; ir < row_block_size; ++ir) {
const int i_Eq = ir + row_block_size * l_row;
col_coupleBlock_val[k*block_size + ir + row_block_size*ic] +=
array[INDEX4
(i_Eq, i_Sol, k_Equa, k_Sol, num_Equa, num_Sol, NN_Equa)];
}
}
break;
}
}
}
}
}
}
}
}
}
template <typename T>
void addToSystemMatrixPasoCSR(paso::SystemMatrix<T>* in, int NN_Equa,
const index_t* Nodes_Equa, int num_Equa,
int NN_Sol, const index_t* Nodes_Sol,
int num_Sol, const T* array)
{
const int index_offset = (in->type & MATRIX_FORMAT_OFFSET1 ? 1 : 0);
const int row_block_size = in->row_block_size;
const int col_block_size = in->col_block_size;
const int block_size = in->block_size;
const int num_subblocks_Equa = num_Equa / row_block_size;
const int num_subblocks_Sol = num_Sol / col_block_size;
const dim_t numMyCols = in->pattern->mainPattern->numInput;
const dim_t numMyRows = in->pattern->mainPattern->numOutput;
const index_t* mainBlock_ptr = in->mainBlock->pattern->ptr;
const index_t* mainBlock_index = in->mainBlock->pattern->index;
T* mainBlock_val = in->mainBlock->val;
const index_t* col_coupleBlock_ptr = in->col_coupleBlock->pattern->ptr;
const index_t* col_coupleBlock_index = in->col_coupleBlock->pattern->index;
T* col_coupleBlock_val = in->col_coupleBlock->val;
const index_t* row_coupleBlock_ptr = in->row_coupleBlock->pattern->ptr;
const index_t* row_coupleBlock_index = in->row_coupleBlock->pattern->index;
T* row_coupleBlock_val = in->row_coupleBlock->val;
for (int k_Equa = 0; k_Equa < NN_Equa; ++k_Equa) {
// Down columns of array
const index_t j_Equa = Nodes_Equa[k_Equa];
for (int l_row = 0; l_row<num_subblocks_Equa; ++l_row) {
const index_t i_row = j_Equa*num_subblocks_Equa+l_row;
// only look at the matrix rows stored on this processor
if (i_row < numMyRows) {
for (int k_Sol=0; k_Sol<NN_Sol; ++k_Sol) {
// Across rows of array
const index_t j_Sol=Nodes_Sol[k_Sol];
for (int l_col=0; l_col<num_subblocks_Sol; ++l_col) {
// only look at the matrix rows stored on this processor
const index_t i_col = j_Sol * num_subblocks_Sol + index_offset + l_col;
if (i_col < numMyCols + index_offset) {
for (index_t k = mainBlock_ptr[i_row] - index_offset;
k < mainBlock_ptr[i_row + 1] - index_offset; ++k) {
if (mainBlock_index[k] == i_col) {
// Entry array(k_Sol, j_Equa) is a block
// (row_block_size x col_block_size)
for (int ic = 0; ic < col_block_size; ++ic) {
const int i_Sol = ic + col_block_size * l_col;
for (int ir = 0; ir < row_block_size; ++ir) {
const int i_Eq = ir + row_block_size * l_row;
mainBlock_val[k*block_size + ir + row_block_size*ic]+=
array[INDEX4
(i_Eq, i_Sol, k_Equa, k_Sol, num_Equa, num_Sol, NN_Equa)];
}
}
break;
}
}
} else {
for (index_t k = col_coupleBlock_ptr[i_row] - index_offset;
k < col_coupleBlock_ptr[i_row + 1] - index_offset; ++k) {
if (col_coupleBlock_index[k] == i_col - numMyCols) {
// Entry array(k_Sol, j_Equa) is a block
// (row_block_size x col_block_size)
for (int ic = 0; ic < col_block_size; ++ic) {
const int i_Sol = ic + col_block_size * l_col;
for (int ir = 0; ir < row_block_size; ++ir) {
const int i_Eq = ir+row_block_size*l_row;
col_coupleBlock_val[k*block_size + ir + row_block_size*ic]+=
array[INDEX4
(i_Eq, i_Sol, k_Equa, k_Sol, num_Equa, num_Sol, NN_Equa)];
}
}
break;
}
}
}
}
}
} else { // i_row >= numMyRows
for (int k_Sol = 0; k_Sol < NN_Sol; ++k_Sol) {
// Across rows of array
const index_t j_Sol = Nodes_Sol[k_Sol];
for (int l_col = 0; l_col < num_subblocks_Sol; ++l_col) {
const index_t i_col = j_Sol * num_subblocks_Sol + index_offset + l_col;
if (i_col < numMyCols + index_offset) {
for (index_t k = row_coupleBlock_ptr[i_row - numMyRows] - index_offset;
k < row_coupleBlock_ptr[i_row - numMyRows + 1] - index_offset; ++k) {
if (row_coupleBlock_index[k] == i_col) {
// Entry array(k_Sol, j_Equa) is a block
// (row_block_size x col_block_size)
for (int ic = 0; ic < col_block_size; ++ic) {
const int i_Sol = ic + col_block_size * l_col;
for (int ir = 0; ir < row_block_size; ++ir) {
const int i_Eq = ir + row_block_size * l_row;
row_coupleBlock_val[k*block_size + ir + row_block_size*ic]+=
array[INDEX4
(i_Eq, i_Sol, k_Equa, k_Sol, num_Equa, num_Sol, NN_Equa)];
}
}
break;
}
}
}
}
}
}
}
}
}
#endif // ESYS_HAVE_PASO
} // namespace finley
|