1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
|
/*****************************************************************************
*
* Copyright (c) 2003-2020 by The University of Queensland
* http://www.uq.edu.au
*
* Primary Business: Queensland, Australia
* Licensed under the Apache License, version 2.0
* http://www.apache.org/licenses/LICENSE-2.0
*
* Development until 2012 by Earth Systems Science Computational Center (ESSCC)
* Development 2012-2013 by School of Earth Sciences
* Development from 2014-2017 by Centre for Geoscience Computing (GeoComp)
* Development from 2019 by School of Earth and Environmental Sciences
**
*****************************************************************************/
#include "NodeFile.h"
#include <escript/Data.h>
#include <escript/index.h>
#include <limits>
#include <sstream>
#include <iostream>
namespace finley {
// helper function
static std::pair<index_t,index_t> getGlobalRange(dim_t n, const index_t* id,
escript::JMPI mpiInfo)
{
std::pair<index_t,index_t> result(util::getMinMaxInt(1, n, id));
#ifdef ESYS_MPI
index_t global_id_range[2];
index_t id_range[2] = { -result.first, result.second };
MPI_Allreduce(id_range, global_id_range, 2, MPI_DIM_T, MPI_MAX,
mpiInfo->comm);
result.first = -global_id_range[0];
result.second = global_id_range[1];
#endif
if (result.second < result.first) {
result.first = -1;
result.second = 0;
}
return result;
}
// helper function
static void scatterEntries(dim_t n, const index_t* index, index_t min_index,
index_t max_index, index_t* Id_out,
const index_t* Id_in,
int* Tag_out, const int* Tag_in,
index_t* globalDegreesOfFreedom_out,
const index_t* globalDegreesOfFreedom_in,
int numDim, double* Coordinates_out,
const double* Coordinates_in)
{
const index_t range = max_index-min_index;
const size_t numDim_size = numDim*sizeof(double);
#pragma omp parallel for
for (index_t i=0; i<n; i++) {
const index_t k = index[i]-min_index;
if (k>=0 && k<range) {
Id_out[k] = Id_in[i];
Tag_out[k] = Tag_in[i];
globalDegreesOfFreedom_out[k] = globalDegreesOfFreedom_in[i];
memcpy(&Coordinates_out[INDEX2(0,k,numDim)],
&Coordinates_in[INDEX2(0,i,numDim)], numDim_size);
}
}
}
// helper function
static void gatherEntries(dim_t n, const index_t* index,
index_t min_index, index_t max_index,
index_t* Id_out, const index_t* Id_in,
int* Tag_out, const int* Tag_in,
index_t* globalDegreesOfFreedom_out,
const index_t* globalDegreesOfFreedom_in,
int numDim, double* Coordinates_out,
const double* Coordinates_in)
{
const index_t range = max_index-min_index;
const size_t numDim_size = numDim*sizeof(double);
#pragma omp parallel for
for (index_t i=0; i<n; i++) {
const index_t k = index[i]-min_index;
if (k>=0 && k<range) {
Id_out[i] = Id_in[k];
Tag_out[i] = Tag_in[k];
globalDegreesOfFreedom_out[i] = globalDegreesOfFreedom_in[k];
memcpy(&Coordinates_out[INDEX2(0,i,numDim)],
&Coordinates_in[INDEX2(0,k,numDim)], numDim_size);
}
}
}
/// constructor
/// use NodeFile::allocTable to allocate the node table (Id,Coordinates)
NodeFile::NodeFile(int nDim, escript::JMPI mpiInfo) :
numNodes(0),
MPIInfo(mpiInfo),
numDim(nDim),
Id(NULL),
Tag(NULL),
globalDegreesOfFreedom(NULL),
Coordinates(NULL),
globalReducedDOFIndex(NULL),
globalReducedNodesIndex(NULL),
globalNodesIndex(NULL),
reducedNodesId(NULL),
degreesOfFreedomId(NULL),
reducedDegreesOfFreedomId(NULL),
status(FINLEY_INITIAL_STATUS)
{
}
NodeFile::~NodeFile()
{
freeTable();
}
void NodeFile::allocTable(dim_t NN)
{
if (numNodes > 0)
freeTable();
Id = new index_t[NN];
Coordinates = new escript::DataTypes::real_t[NN*numDim];
Tag = new int[NN];
globalDegreesOfFreedom = new index_t[NN];
globalReducedDOFIndex = new index_t[NN];
globalReducedNodesIndex = new index_t[NN];
globalNodesIndex = new index_t[NN];
reducedNodesId = new index_t[NN];
degreesOfFreedomId = new index_t[NN];
reducedDegreesOfFreedomId = new index_t[NN];
numNodes = NN;
// this initialization makes sure that data are located on the right
// processor
#pragma omp parallel for
for (index_t n=0; n<numNodes; n++) {
Id[n] = -1;
for (int i=0; i<numDim; i++)
Coordinates[INDEX2(i,n,numDim)] = 0.;
Tag[n] = -1;
globalDegreesOfFreedom[n] = -1;
globalReducedDOFIndex[n] = -1;
globalReducedNodesIndex[n] = -1;
globalNodesIndex[n] = -1;
reducedNodesId[n] = -1;
degreesOfFreedomId[n] = -1;
reducedDegreesOfFreedomId[n] = -1;
}
}
void NodeFile::freeTable()
{
delete[] Id;
delete[] Coordinates;
delete[] globalDegreesOfFreedom;
delete[] globalReducedDOFIndex;
delete[] globalReducedNodesIndex;
delete[] globalNodesIndex;
delete[] Tag;
delete[] reducedNodesId;
delete[] degreesOfFreedomId;
delete[] reducedDegreesOfFreedomId;
tagsInUse.clear();
nodesMapping.clear();
reducedNodesMapping.clear();
degreesOfFreedomMapping.clear();
reducedDegreesOfFreedomMapping.clear();
nodesDistribution.reset();
reducedNodesDistribution.reset();
degreesOfFreedomDistribution.reset();
reducedDegreesOfFreedomDistribution.reset();
#ifdef ESYS_HAVE_PASO
degreesOfFreedomConnector.reset();
reducedDegreesOfFreedomConnector.reset();
#endif
#ifdef ESYS_HAVE_TRILINOS
trilinosRowMap.reset();
trilinosReducedRowMap.reset();
trilinosColMap.reset();
trilinosReducedColMap.reset();
#endif
numNodes = 0;
}
void NodeFile::print() const
{
std::cout << "=== " << numDim << "D-Nodes:\nnumber of nodes=" << numNodes
<< std::endl;
std::cout << "Id,Tag,globalDegreesOfFreedom,degreesOfFreedom,reducedDegreesOfFeedom,node,reducedNode,Coordinates" << std::endl;
for (index_t i=0; i<numNodes; i++) {
std::cout << Id[i] << "," << Tag[i] << "," << globalDegreesOfFreedom[i]
<< "," << degreesOfFreedomMapping.target[i]
<< "," << reducedDegreesOfFreedomMapping.target[i]
<< "," << nodesMapping.target[i] << reducedNodesMapping.target[i]
<< " ";
std::cout.precision(15);
std::cout.setf(std::ios::scientific, std::ios::floatfield);
for (int j=0; j<numDim; j++)
std:: cout << Coordinates[INDEX2(j,i,numDim)];
std::cout << std::endl;
}
}
std::pair<index_t,index_t> NodeFile::getDOFRange() const
{
std::pair<index_t,index_t> result(util::getMinMaxInt(
1, numNodes, globalDegreesOfFreedom));
if (result.second < result.first) {
result.first = -1;
result.second = 0;
}
return result;
}
std::pair<index_t,index_t> NodeFile::getGlobalIdRange() const
{
return getGlobalRange(numNodes, Id, MPIInfo);
}
std::pair<index_t,index_t> NodeFile::getGlobalDOFRange() const
{
return getGlobalRange(numNodes, globalDegreesOfFreedom, MPIInfo);
}
std::pair<index_t,index_t> NodeFile::getGlobalNodeIDIndexRange() const
{
return getGlobalRange(numNodes, globalNodesIndex, MPIInfo);
}
/// copies the array newX into this->coordinates
void NodeFile::setCoordinates(const escript::Data& newX)
{
if (newX.getDataPointSize() != numDim) {
std::stringstream ss;
ss << "NodeFile::setCoordinates: number of dimensions of new "
"coordinates has to be " << numDim;
throw escript::ValueError(ss.str());
} else if (newX.getNumDataPointsPerSample() != 1 ||
newX.getNumSamples() != numNodes) {
std::stringstream ss;
ss << "NodeFile::setCoordinates: number of given nodes must be "
<< numNodes;
throw escript::ValueError(ss.str());
} else {
const size_t numDim_size = numDim * sizeof(double);
++status;
#pragma omp parallel for
for (index_t n = 0; n < numNodes; n++) {
memcpy(&Coordinates[INDEX2(0, n, numDim)],
newX.getSampleDataRO(n), numDim_size);
}
}
}
/// sets tags to newTag where mask>0
void NodeFile::setTags(int newTag, const escript::Data& mask)
{
if (1 != mask.getDataPointSize()) {
throw escript::ValueError("NodeFile::setTags: number of components of mask must be 1.");
} else if (mask.getNumDataPointsPerSample() != 1 ||
mask.getNumSamples() != numNodes) {
throw escript::ValueError("NodeFile::setTags: illegal number of samples of mask Data object");
}
#pragma omp parallel for
for (index_t n = 0; n < numNodes; n++) {
if (mask.getSampleDataRO(n)[0] > 0)
Tag[n] = newTag;
}
updateTagList();
}
void NodeFile::copyTable(index_t offset, index_t idOffset, index_t dofOffset,
const NodeFile* in)
{
// check number of dimensions and table size
if (numDim != in->numDim) {
throw escript::ValueError("NodeFile::copyTable: dimensions of node files don't match");
}
if (numNodes < in->numNodes+offset) {
throw escript::ValueError("NodeFile::copyTable: node table is too small.");
}
#pragma omp parallel for
for (index_t n=0; n<in->numNodes; n++) {
Id[offset+n]=in->Id[n]+idOffset;
Tag[offset+n]=in->Tag[n];
globalDegreesOfFreedom[offset+n]=in->globalDegreesOfFreedom[n]+dofOffset;
for(int i=0; i<numDim; i++)
Coordinates[INDEX2(i, offset+n, numDim)] =
in->Coordinates[INDEX2(i, n, in->numDim)];
}
}
/// scatters the NodeFile in into this NodeFile using index[0:in->numNodes-1].
/// index has to be between 0 and numNodes-1.
/// colouring is chosen for the worst case
void NodeFile::scatter(const index_t* index, const NodeFile* in)
{
scatterEntries(numNodes, index, 0, in->numNodes, Id, in->Id, Tag, in->Tag,
globalDegreesOfFreedom, in->globalDegreesOfFreedom,
numDim, Coordinates, in->Coordinates);
}
/// gathers this NodeFile from the NodeFile 'in' using the entries in
/// index[0:out->numNodes-1] which are between 0 (and in->numNodes)
/// (exclusive)
// WARNING: This does not wotj for MPI!!!
void NodeFile::gather(const index_t* index, const NodeFile* in)
{
gatherEntries(numNodes, index, 0, in->getNumNodes(), Id, in->Id,
Tag, in->Tag, globalDegreesOfFreedom, in->globalDegreesOfFreedom,
numDim, Coordinates, in->Coordinates);
}
void NodeFile::gather_global(const index_t* index, const NodeFile* in)
{
// get the global range of node ids
const std::pair<index_t,index_t> id_range(in->getGlobalIdRange());
const index_t undefined_node = id_range.first-1;
std::vector<index_t> distribution(in->MPIInfo->size+1);
// distribute the range of node ids
index_t buffer_len = in->MPIInfo->setDistribution(id_range.first, id_range.second, &distribution[0]);
// allocate buffers
index_t* Id_buffer = new index_t[buffer_len];
int* Tag_buffer = new int[buffer_len];
index_t* globalDegreesOfFreedom_buffer = new index_t[buffer_len];
double* Coordinates_buffer = new double[buffer_len*numDim];
// fill Id_buffer by the undefined_node marker to check if nodes
// are defined
#pragma omp parallel for
for (index_t n = 0; n < buffer_len; n++)
Id_buffer[n] = undefined_node;
// fill the buffer by sending portions around in a circle
#ifdef ESYS_MPI
MPI_Status status;
int dest = in->MPIInfo->mod_rank(in->MPIInfo->rank+1);
int source = in->MPIInfo->mod_rank(in->MPIInfo->rank-1);
#endif
int buffer_rank = in->MPIInfo->rank;
for (int p=0; p<in->MPIInfo->size; ++p) {
if (p>0) { // the initial send can be skipped
#ifdef ESYS_MPI
MPI_Sendrecv_replace(Id_buffer, buffer_len, MPI_DIM_T, dest,
in->MPIInfo->counter(), source,
in->MPIInfo->counter(), in->MPIInfo->comm, &status);
MPI_Sendrecv_replace(Tag_buffer, buffer_len, MPI_INT, dest,
in->MPIInfo->counter()+1, source,
in->MPIInfo->counter()+1, in->MPIInfo->comm, &status);
MPI_Sendrecv_replace(globalDegreesOfFreedom_buffer, buffer_len,
MPI_DIM_T, dest, in->MPIInfo->counter()+2, source,
in->MPIInfo->counter()+2, in->MPIInfo->comm, &status);
MPI_Sendrecv_replace(Coordinates_buffer, buffer_len*numDim,
MPI_DOUBLE, dest, in->MPIInfo->counter()+3, source,
in->MPIInfo->counter()+3, in->MPIInfo->comm, &status);
in->MPIInfo->incCounter(4);
#endif
}
buffer_rank=in->MPIInfo->mod_rank(buffer_rank-1);
scatterEntries(in->numNodes, in->Id, distribution[buffer_rank],
distribution[buffer_rank+1], Id_buffer, in->Id,
Tag_buffer, in->Tag, globalDegreesOfFreedom_buffer,
in->globalDegreesOfFreedom, numDim, Coordinates_buffer,
in->Coordinates);
}
// now entries are collected from the buffer again by sending the
// entries around in a circle
#ifdef ESYS_MPI
dest = in->MPIInfo->mod_rank(in->MPIInfo->rank+1);
source = in->MPIInfo->mod_rank(in->MPIInfo->rank-1);
#endif
buffer_rank=in->MPIInfo->rank;
for (int p=0; p<in->MPIInfo->size; ++p) {
gatherEntries(numNodes, index, distribution[buffer_rank],
distribution[buffer_rank+1], Id, Id_buffer, Tag, Tag_buffer,
globalDegreesOfFreedom, globalDegreesOfFreedom_buffer, numDim,
Coordinates, Coordinates_buffer);
if (p < in->MPIInfo->size-1) { // the last send can be skipped
#ifdef ESYS_MPI
MPI_Sendrecv_replace(Id_buffer, buffer_len, MPI_DIM_T, dest,
in->MPIInfo->counter(), source,
in->MPIInfo->counter(), in->MPIInfo->comm, &status);
MPI_Sendrecv_replace(Tag_buffer, buffer_len, MPI_INT, dest,
in->MPIInfo->counter()+1, source,
in->MPIInfo->counter()+1, in->MPIInfo->comm, &status);
MPI_Sendrecv_replace(globalDegreesOfFreedom_buffer, buffer_len,
MPI_DIM_T, dest, in->MPIInfo->counter()+2, source,
in->MPIInfo->counter()+2, in->MPIInfo->comm, &status);
MPI_Sendrecv_replace(Coordinates_buffer, buffer_len*numDim,
MPI_DOUBLE, dest, in->MPIInfo->counter()+3, source,
in->MPIInfo->counter()+3, in->MPIInfo->comm, &status);
in->MPIInfo->incCounter(4);
#endif
}
buffer_rank=in->MPIInfo->mod_rank(buffer_rank-1);
}
#if DOASSERT
// check if all nodes are set:
index_t err=-1;
#pragma omp parallel for
for (index_t n=0; n<numNodes; ++n) {
if (Id[n] == undefined_node) {
#pragma omp critical
err=n;
}
}
if (err>=0) {
std::stringstream ss;
ss << "NodeFile::gather_global: Node id " << Id[err]
<< " at position " << err << " is referenced but not defined.";
const std::string errorMsg(ss.str());
throw escript::AssertException(errorMsg);
}
#endif // DOASSERT
delete[] Id_buffer;
delete[] Tag_buffer;
delete[] globalDegreesOfFreedom_buffer;
delete[] Coordinates_buffer;
}
void NodeFile::assignMPIRankToDOFs(std::vector<int>& mpiRankOfDOF,
const IndexVector& distribution)
{
int p_min = MPIInfo->size, p_max = -1;
// first we calculate the min and max DOF on this processor to reduce
// costs for searching
const std::pair<index_t,index_t> dofRange(getDOFRange());
for (int p = 0; p < MPIInfo->size; ++p) {
if (distribution[p] <= dofRange.first)
p_min = p;
if (distribution[p] <= dofRange.second)
p_max = p;
}
#pragma omp parallel for
for (index_t n = 0; n < numNodes; ++n) {
const index_t k = globalDegreesOfFreedom[n];
for (int p = p_min; p <= p_max; ++p) {
if (k < distribution[p + 1]) {
mpiRankOfDOF[n] = p;
break;
}
}
}
}
dim_t NodeFile::prepareLabeling(const std::vector<short>& mask,
IndexVector& buffer,
IndexVector& distribution,
bool useNodes)
{
const index_t UNSET_ID=-1,SET_ID=1;
// get the global range of DOF/node ids
std::pair<index_t,index_t> idRange(useNodes ?
getGlobalNodeIDIndexRange() : getGlobalDOFRange());
const index_t* indexArray = (useNodes ? globalNodesIndex : globalDegreesOfFreedom);
// distribute the range of node ids
distribution.assign(MPIInfo->size+1, 0);
int buffer_len = MPIInfo->setDistribution(idRange.first,
idRange.second, &distribution[0]);
const dim_t myCount = distribution[MPIInfo->rank+1]-distribution[MPIInfo->rank];
// fill buffer by the UNSET_ID marker to check if nodes are defined
buffer.assign(buffer_len, UNSET_ID);
// fill the buffer by sending portions around in a circle
#ifdef ESYS_MPI
MPI_Status status;
int dest = MPIInfo->mod_rank(MPIInfo->rank + 1);
int source = MPIInfo->mod_rank(MPIInfo->rank - 1);
#endif
int buffer_rank=MPIInfo->rank;
for (int p=0; p<MPIInfo->size; ++p) {
if (p>0) { // the initial send can be skipped
#ifdef ESYS_MPI
MPI_Sendrecv_replace(&buffer[0], buffer.size(), MPI_DIM_T, dest,
MPIInfo->counter(), source, MPIInfo->counter(),
MPIInfo->comm, &status);
MPIInfo->incCounter();
#endif
}
buffer_rank = MPIInfo->mod_rank(buffer_rank-1);
const index_t id0 = distribution[buffer_rank];
const index_t id1 = distribution[buffer_rank+1];
#pragma omp parallel for
for (index_t n = 0; n < numNodes; n++) {
if (mask.size() < numNodes || mask[n] > -1) {
const index_t k = indexArray[n];
if (id0 <= k && k < id1) {
buffer[k - id0] = SET_ID;
}
}
}
}
// count the entries in the buffer
// TODO: OMP parallel
index_t myNewCount = 0;
for (index_t n = 0; n < myCount; ++n) {
if (buffer[n] == SET_ID) {
buffer[n] = myNewCount;
myNewCount++;
}
}
return myNewCount;
}
dim_t NodeFile::createDenseDOFLabeling()
{
std::vector<index_t> DOF_buffer;
std::vector<index_t> distribution;
std::vector<index_t> loc_offsets(MPIInfo->size);
std::vector<index_t> offsets(MPIInfo->size);
index_t new_numGlobalDOFs = 0;
// retrieve the number of own DOFs and fill buffer
loc_offsets[MPIInfo->rank] = prepareLabeling(std::vector<short>(),
DOF_buffer, distribution, false);
#ifdef ESYS_MPI
MPI_Allreduce(&loc_offsets[0], &offsets[0], MPIInfo->size, MPI_DIM_T,
MPI_SUM, MPIInfo->comm);
for (int n=0; n<MPIInfo->size; ++n) {
loc_offsets[n]=new_numGlobalDOFs;
new_numGlobalDOFs+=offsets[n];
}
#else
new_numGlobalDOFs = loc_offsets[0];
loc_offsets[0] = 0;
#endif
const dim_t myDOFs = distribution[MPIInfo->rank+1]-distribution[MPIInfo->rank];
#pragma omp parallel for
for (index_t n = 0; n < myDOFs; ++n)
DOF_buffer[n] += loc_offsets[MPIInfo->rank];
std::vector<unsigned char> set_new_DOF(numNodes, true);
// now entries are collected from the buffer again by sending them around
// in a circle
#ifdef ESYS_MPI
int dest = MPIInfo->mod_rank(MPIInfo->rank + 1);
int source = MPIInfo->mod_rank(MPIInfo->rank - 1);
#endif
int buffer_rank = MPIInfo->rank;
for (int p = 0; p < MPIInfo->size; ++p) {
const index_t dof0 = distribution[buffer_rank];
const index_t dof1 = distribution[buffer_rank+1];
#pragma omp parallel for
for (index_t n = 0; n < numNodes; n++) {
const index_t k = globalDegreesOfFreedom[n];
if (set_new_DOF[n] && dof0<=k && k<dof1) {
globalDegreesOfFreedom[n]=DOF_buffer[k-dof0];
set_new_DOF[n]=false;
}
}
if (p<MPIInfo->size-1) { // the last send can be skipped
#ifdef ESYS_MPI
MPI_Status status;
MPI_Sendrecv_replace(&DOF_buffer[0], DOF_buffer.size(), MPI_DIM_T,
dest, MPIInfo->counter(), source,
MPIInfo->counter(), MPIInfo->comm, &status);
MPIInfo->incCounter();
#endif
}
buffer_rank = MPIInfo->mod_rank(buffer_rank-1);
}
return new_numGlobalDOFs;
}
dim_t NodeFile::createDenseNodeLabeling(IndexVector& nodeDistribution,
const IndexVector& dofDistribution)
{
const index_t UNSET_ID=-1, SET_ID=1;
const index_t myFirstDOF = dofDistribution[MPIInfo->rank];
const index_t myLastDOF = dofDistribution[MPIInfo->rank+1];
// find the range of node ids controlled by me
index_t min_id = std::numeric_limits<index_t>::max();
index_t max_id = std::numeric_limits<index_t>::min();
#pragma omp parallel
{
index_t loc_max_id = max_id;
index_t loc_min_id = min_id;
#pragma omp for
for (index_t n = 0; n < numNodes; n++) {
const dim_t dof = globalDegreesOfFreedom[n];
if (myFirstDOF <= dof && dof < myLastDOF) {
loc_max_id = std::max(loc_max_id, Id[n]);
loc_min_id = std::min(loc_min_id, Id[n]);
}
}
#pragma omp critical
{
max_id = std::max(loc_max_id, max_id);
min_id = std::min(loc_min_id, min_id);
}
}
index_t my_buffer_len = (max_id>=min_id ? max_id-min_id+1 : 0);
index_t buffer_len;
#ifdef ESYS_MPI
MPI_Allreduce(&my_buffer_len, &buffer_len, 1, MPI_DIM_T, MPI_MAX,
MPIInfo->comm);
#else
buffer_len=my_buffer_len;
#endif
const int header_len=2;
std::vector<index_t> Node_buffer(buffer_len+header_len, UNSET_ID);
// extra storage for these IDs
Node_buffer[0]=min_id;
Node_buffer[1]=max_id;
// mark and count the nodes in use
#pragma omp parallel for
for (index_t n = 0; n < numNodes; n++) {
globalNodesIndex[n] = -1;
const index_t dof = globalDegreesOfFreedom[n];
if (myFirstDOF <= dof && dof < myLastDOF)
Node_buffer[Id[n]-min_id+header_len] = SET_ID;
}
index_t myNewNumNodes = 0;
for (index_t n = 0; n < my_buffer_len; n++) {
if (Node_buffer[header_len+n] == SET_ID) {
Node_buffer[header_len+n] = myNewNumNodes;
myNewNumNodes++;
}
}
// make the local number of nodes globally available
#ifdef ESYS_MPI
MPI_Allgather(&myNewNumNodes, 1, MPI_DIM_T, &nodeDistribution[0], 1,
MPI_DIM_T, MPIInfo->comm);
#else
nodeDistribution[0] = myNewNumNodes;
#endif
dim_t globalNumNodes = 0;
for (int p = 0; p < MPIInfo->size; ++p) {
const dim_t itmp = nodeDistribution[p];
nodeDistribution[p] = globalNumNodes;
globalNumNodes += itmp;
}
nodeDistribution[MPIInfo->size] = globalNumNodes;
// offset node buffer
#pragma omp parallel for
for (index_t n = 0; n < my_buffer_len; n++)
Node_buffer[n+header_len] += nodeDistribution[MPIInfo->rank];
// now we send this buffer around to assign global node index
#ifdef ESYS_MPI
int dest = MPIInfo->mod_rank(MPIInfo->rank + 1);
int source = MPIInfo->mod_rank(MPIInfo->rank - 1);
#endif
int buffer_rank=MPIInfo->rank;
for (int p=0; p<MPIInfo->size; ++p) {
const index_t nodeID_0 = Node_buffer[0];
const index_t nodeID_1 = Node_buffer[1];
const index_t dof0 = dofDistribution[buffer_rank];
const index_t dof1 = dofDistribution[buffer_rank+1];
if (nodeID_0 <= nodeID_1) {
#pragma omp parallel for
for (index_t n = 0; n < numNodes; n++) {
const index_t dof = globalDegreesOfFreedom[n];
const index_t id = Id[n]-nodeID_0;
if (dof0 <= dof && dof < dof1 && id>=0 && id<=nodeID_1-nodeID_0)
globalNodesIndex[n] = Node_buffer[id+header_len];
}
}
if (p<MPIInfo->size-1) { // the last send can be skipped
#ifdef ESYS_MPI
MPI_Status status;
MPI_Sendrecv_replace(&Node_buffer[0], Node_buffer.size(), MPI_DIM_T,
dest, MPIInfo->counter(), source,
MPIInfo->counter(), MPIInfo->comm, &status);
MPIInfo->incCounter();
#endif
}
buffer_rank = MPIInfo->mod_rank(buffer_rank-1);
}
return globalNumNodes;
}
dim_t NodeFile::createDenseReducedLabeling(const std::vector<short>& reducedMask,
bool useNodes)
{
std::vector<index_t> buffer;
std::vector<index_t> distribution;
std::vector<index_t> loc_offsets(MPIInfo->size);
std::vector<index_t> offsets(MPIInfo->size);
dim_t new_numGlobalReduced=0;
// retrieve the number of own DOFs/nodes and fill buffer
loc_offsets[MPIInfo->rank]=prepareLabeling(reducedMask, buffer,
distribution, useNodes);
#ifdef ESYS_MPI
MPI_Allreduce(&loc_offsets[0], &offsets[0], MPIInfo->size, MPI_DIM_T,
MPI_SUM, MPIInfo->comm);
for (int n=0; n<MPIInfo->size; ++n) {
loc_offsets[n]=new_numGlobalReduced;
new_numGlobalReduced+=offsets[n];
}
#else
new_numGlobalReduced=loc_offsets[0];
loc_offsets[0]=0;
#endif
const dim_t myCount=distribution[MPIInfo->rank+1]-distribution[MPIInfo->rank];
#pragma omp parallel for
for (index_t n=0; n<myCount; ++n)
buffer[n]+=loc_offsets[MPIInfo->rank];
const index_t* denseArray =
(useNodes ? globalNodesIndex : globalDegreesOfFreedom);
index_t* reducedArray =
(useNodes ? globalReducedNodesIndex : globalReducedDOFIndex);
#pragma omp parallel for
for (index_t n=0; n<numNodes; ++n)
reducedArray[n]=loc_offsets[0]-1;
// now entries are collected from the buffer by sending them around
// in a circle
#ifdef ESYS_MPI
int dest = MPIInfo->mod_rank(MPIInfo->rank + 1);
int source = MPIInfo->mod_rank(MPIInfo->rank - 1);
#endif
int buffer_rank=MPIInfo->rank;
for (int p=0; p<MPIInfo->size; ++p) {
const index_t id0=distribution[buffer_rank];
const index_t id1=distribution[buffer_rank+1];
#pragma omp parallel for
for (index_t n=0; n<numNodes; n++) {
if (reducedMask[n] > -1) {
const index_t k=denseArray[n];
if (id0<=k && k<id1)
reducedArray[n]=buffer[k-id0];
}
}
if (p<MPIInfo->size-1) { // the last send can be skipped
#ifdef ESYS_MPI
MPI_Status status;
MPI_Sendrecv_replace(&buffer[0], buffer.size(), MPI_DIM_T, dest,
MPIInfo->counter(), source,
MPIInfo->counter(), MPIInfo->comm, &status);
MPIInfo->incCounter();
#endif
}
buffer_rank = MPIInfo->mod_rank(buffer_rank-1);
}
return new_numGlobalReduced;
}
void NodeFile::createDOFMappingAndCoupling(bool use_reduced_elements)
{
escript::Distribution_ptr dofDistribution;
const index_t* globalDOFIndex;
if (use_reduced_elements) {
dofDistribution = reducedDegreesOfFreedomDistribution;
globalDOFIndex = globalReducedDOFIndex;
} else {
dofDistribution = degreesOfFreedomDistribution;
globalDOFIndex = globalDegreesOfFreedom;
}
NodeMapping& mapping = (use_reduced_elements ?
reducedDegreesOfFreedomMapping : degreesOfFreedomMapping);
const index_t myFirstDOF = dofDistribution->getFirstComponent();
const index_t myLastDOF = dofDistribution->getLastComponent();
const int mpiSize = MPIInfo->size;
const int myRank = MPIInfo->rank;
index_t min_DOF, max_DOF;
std::pair<index_t,index_t> DOF_range(util::getFlaggedMinMaxInt(
numNodes, globalDOFIndex, -1));
if (DOF_range.second < DOF_range.first) {
min_DOF = myFirstDOF;
max_DOF = myLastDOF - 1;
} else {
min_DOF = DOF_range.first;
max_DOF = DOF_range.second;
}
int p_min = mpiSize;
int p_max = -1;
if (max_DOF >= min_DOF) {
for (int p = 0; p < mpiSize; ++p) {
if (dofDistribution->first_component[p] <= min_DOF)
p_min = p;
if (dofDistribution->first_component[p] <= max_DOF)
p_max = p;
}
}
std::stringstream ss;
if (myFirstDOF<myLastDOF && !(min_DOF <= myFirstDOF && myLastDOF-1 <= max_DOF)) {
ss << "createDOFMappingAndCoupling: Local elements do not span local "
"degrees of freedom. min_DOF=" << min_DOF << ", myFirstDOF="
<< myFirstDOF << ", myLastDOF-1=" << myLastDOF-1
<< ", max_DOF=" << max_DOF << " on rank=" << MPIInfo->rank;
}
const std::string msg(ss.str());
int error = msg.length();
int gerror = error;
escript::checkResult(error, gerror, MPIInfo);
if (gerror > 0) {
char* gmsg;
escript::shipString(msg.c_str(), &gmsg, MPIInfo->comm);
throw FinleyException(gmsg);
}
const index_t UNUSED = -1;
const dim_t len_loc_dof = max_DOF - min_DOF + 1;
std::vector<index_t> shared(numNodes * (p_max - p_min + 1));
std::vector<index_t> locDOFMask(len_loc_dof, UNUSED);
#ifdef BOUNDS_CHECK
ESYS_ASSERT(myLastDOF-min_DOF <= len_loc_dof, "BOUNDS_CHECK");
#endif
#pragma omp parallel
{
#pragma omp for
for (index_t i = 0; i < numNodes; ++i) {
const index_t k = globalDOFIndex[i];
if (k > -1) {
#ifdef BOUNDS_CHECK
ESYS_ASSERT(k - min_DOF < len_loc_dof, "BOUNDS_CHECK");
#endif
locDOFMask[k - min_DOF] = UNUSED - 1;
}
}
#pragma omp for
for (index_t i = myFirstDOF - min_DOF; i < myLastDOF - min_DOF; ++i) {
locDOFMask[i] = i - myFirstDOF + min_DOF;
}
}
std::vector<index_t> wanted_DOFs(numNodes);
std::vector<index_t> rcv_len(mpiSize);
std::vector<index_t> snd_len(mpiSize);
std::vector<int> neighbour;
std::vector<index_t> offsetInShared;
dim_t n = 0;
dim_t lastn = n;
for (int p = p_min; p <= p_max; ++p) {
if (p != myRank) {
const index_t firstDOF = std::max(min_DOF, dofDistribution->first_component[p]);
const index_t lastDOF = std::min(max_DOF + 1, dofDistribution->first_component[p + 1]);
#ifdef BOUNDS_CHECK
ESYS_ASSERT(lastDOF - min_DOF <= len_loc_dof, "BOUNDS_CHECK");
#endif
for (index_t i = firstDOF - min_DOF; i < lastDOF - min_DOF; ++i) {
if (locDOFMask[i] == UNUSED - 1) {
locDOFMask[i] = myLastDOF - myFirstDOF + n;
wanted_DOFs[n] = i + min_DOF;
++n;
}
}
if (n > lastn) {
rcv_len[p] = n - lastn;
neighbour.push_back(p);
offsetInShared.push_back(lastn);
lastn = n;
}
} // if p!=myRank
} // for p
offsetInShared.push_back(lastn);
// assign new DOF labels to nodes
std::vector<index_t> nodeMask(numNodes, UNUSED);
#pragma omp parallel for
for (index_t i = 0; i < numNodes; ++i) {
const index_t k = globalDOFIndex[i];
if (k > -1)
nodeMask[i] = locDOFMask[k - min_DOF];
}
// now we can set the mapping from nodes to local DOFs
mapping.assign(nodeMask, UNUSED);
// define how to get DOF values for controlled but other processors
#ifdef BOUNDS_CHECK
ESYS_ASSERT(numNodes == 0 || offsetInShared.back() < numNodes * (p_max - p_min + 1), "BOUNDS_CHECK");
#endif
#pragma omp parallel for
for (index_t i = 0; i < lastn; ++i)
shared[i] = myLastDOF - myFirstDOF + i;
#ifdef ESYS_HAVE_PASO
index_t* p = shared.empty() ? NULL : &shared[0];
paso::SharedComponents_ptr rcv_shcomp(new paso::SharedComponents(
myLastDOF - myFirstDOF, neighbour, p, offsetInShared));
#endif
/////////////////////////////////
// now we build the sender //
/////////////////////////////////
#ifdef ESYS_MPI
std::vector<MPI_Request> mpi_requests(mpiSize * 2);
std::vector<MPI_Status> mpi_stati(mpiSize * 2);
MPI_Alltoall(&rcv_len[0], 1, MPI_DIM_T, &snd_len[0], 1, MPI_DIM_T, MPIInfo->comm);
int count = 0;
for (int p = 0; p < neighbour.size(); p++) {
MPI_Isend(&wanted_DOFs[offsetInShared[p]],
offsetInShared[p+1] - offsetInShared[p],
MPI_DIM_T, neighbour[p], MPIInfo->counter() + myRank,
MPIInfo->comm, &mpi_requests[count]);
count++;
}
n = 0;
neighbour.clear();
offsetInShared.clear();
for (int p = 0; p < mpiSize; p++) {
if (snd_len[p] > 0) {
MPI_Irecv(&shared[n], snd_len[p], MPI_DIM_T, p,
MPIInfo->counter()+p, MPIInfo->comm,
&mpi_requests[count]);
count++;
neighbour.push_back(p);
offsetInShared.push_back(n);
n += snd_len[p];
}
}
MPIInfo->incCounter(MPIInfo->size);
MPI_Waitall(count, &mpi_requests[0], &mpi_stati[0]);
offsetInShared.push_back(n);
// map global IDs to local IDs
#pragma omp parallel for
for (index_t i = 0; i < n; ++i) {
shared[i] = locDOFMask[shared[i] - min_DOF];
}
#endif // ESYS_MPI
#ifdef ESYS_HAVE_PASO
paso::SharedComponents_ptr snd_shcomp(new paso::SharedComponents(
myLastDOF - myFirstDOF, neighbour, p, offsetInShared));
if (use_reduced_elements) {
reducedDegreesOfFreedomConnector.reset(new paso::Connector(snd_shcomp, rcv_shcomp));
} else {
degreesOfFreedomConnector.reset(new paso::Connector(snd_shcomp, rcv_shcomp));
}
#endif // ESYS_HAVE_PASO
#ifdef ESYS_HAVE_TRILINOS
using namespace esys_trilinos;
const dim_t myNumTargets = myLastDOF - myFirstDOF;
const dim_t numTargets = mapping.getNumTargets();
IndexVector myRows(myNumTargets);
IndexVector columns(numTargets);
const IndexVector& dofMap = mapping.map;
#pragma omp parallel
{
#pragma omp for nowait
for (size_t i = 0; i < myNumTargets; i++) {
myRows[i] = globalDOFIndex[dofMap[i]];
}
#pragma omp for
for (size_t i = 0; i < numTargets; i++) {
columns[i] = globalDOFIndex[dofMap[i]];
}
} // end parallel section
const dim_t numTotal = dofDistribution->getGlobalNumComponents();
if (use_reduced_elements) {
trilinosReducedRowMap.reset(new MapType(numTotal, myRows, 0,
TeuchosCommFromEsysComm(MPIInfo->comm)));
trilinosReducedColMap.reset(new MapType(numTotal, columns, 0,
TeuchosCommFromEsysComm(MPIInfo->comm)));
} else {
trilinosRowMap.reset(new MapType(numTotal, myRows, 0,
TeuchosCommFromEsysComm(MPIInfo->comm)));
trilinosColMap.reset(new MapType(numTotal, columns, 0,
TeuchosCommFromEsysComm(MPIInfo->comm)));
}
#endif // ESYS_HAVE_TRILINOS
}
void NodeFile::createNodeMappings(const IndexVector& indexReducedNodes,
const IndexVector& dofDist,
const IndexVector& nodeDist)
{
const int mpiSize = MPIInfo->size;
const int myRank = MPIInfo->rank;
const index_t myFirstDOF = dofDist[myRank];
const index_t myLastDOF = dofDist[myRank+1];
const index_t myNumDOF = myLastDOF-myFirstDOF;
const index_t myFirstNode = nodeDist[myRank];
const index_t myLastNode = nodeDist[myRank+1];
const index_t myNumNodes = myLastNode-myFirstNode;
std::vector<short> maskMyReducedDOF(myNumDOF, -1);
std::vector<short> maskMyReducedNodes(myNumNodes, -1);
const index_t iRNsize = indexReducedNodes.size();
// mark the nodes used by the reduced mesh
#pragma omp parallel for
for (index_t i = 0; i < iRNsize; ++i) {
index_t k = globalNodesIndex[indexReducedNodes[i]];
if (k >= myFirstNode && myLastNode > k)
maskMyReducedNodes[k - myFirstNode] = 1;
k = globalDegreesOfFreedom[indexReducedNodes[i]];
if (k >= myFirstDOF && myLastDOF > k) {
maskMyReducedDOF[k - myFirstDOF] = 1;
}
}
IndexVector indexMyReducedDOF = util::packMask(maskMyReducedDOF);
index_t myNumReducedDOF = indexMyReducedDOF.size();
IndexVector indexMyReducedNodes = util::packMask(maskMyReducedNodes);
index_t myNumReducedNodes = indexMyReducedNodes.size();
IndexVector rdofDist(mpiSize+1);
IndexVector rnodeDist(mpiSize+1);
#ifdef ESYS_MPI
MPI_Allgather(&myNumReducedNodes, 1, MPI_DIM_T, &rnodeDist[0], 1, MPI_DIM_T, MPIInfo->comm);
MPI_Allgather(&myNumReducedDOF, 1, MPI_DIM_T, &rdofDist[0], 1, MPI_DIM_T, MPIInfo->comm);
#else
rnodeDist[0] = myNumReducedNodes;
rdofDist[0] = myNumReducedDOF;
#endif
index_t globalNumReducedNodes = 0;
index_t globalNumReducedDOF = 0;
for (int i = 0; i < mpiSize; ++i) {
index_t k = rnodeDist[i];
rnodeDist[i] = globalNumReducedNodes;
globalNumReducedNodes += k;
k = rdofDist[i];
rdofDist[i] = globalNumReducedDOF;
globalNumReducedDOF += k;
}
rnodeDist[mpiSize] = globalNumReducedNodes;
rdofDist[mpiSize] = globalNumReducedDOF;
// ==== distribution of Nodes ====
nodesDistribution.reset(new escript::Distribution(MPIInfo, nodeDist));
// ==== distribution of DOFs ====
degreesOfFreedomDistribution.reset(new escript::Distribution(MPIInfo, dofDist));
// ==== distribution of reduced Nodes ====
reducedNodesDistribution.reset(new escript::Distribution(MPIInfo, rnodeDist));
// ==== distribution of reduced DOF ====
reducedDegreesOfFreedomDistribution.reset(new escript::Distribution(
MPIInfo, rdofDist));
IndexVector nodeMask(numNodes);
const index_t UNUSED = -1;
// ==== nodes mapping (dummy) ====
#pragma omp parallel for
for (index_t i = 0; i < numNodes; ++i)
nodeMask[i] = i;
nodesMapping.assign(nodeMask, UNUSED);
// ==== mapping between nodes and reduced nodes ====
#pragma omp parallel for
for (index_t i = 0; i < numNodes; ++i)
nodeMask[i] = UNUSED;
#pragma omp parallel for
for (index_t i = 0; i < iRNsize; ++i)
nodeMask[indexReducedNodes[i]] = i;
reducedNodesMapping.assign(nodeMask, UNUSED);
// ==== mapping between nodes and DOFs + DOF connector
createDOFMappingAndCoupling(false);
// ==== mapping between nodes and reduced DOFs + reduced DOF connector
createDOFMappingAndCoupling(true);
// get the Ids for DOFs and reduced nodes
const index_t rnTargets = reducedNodesMapping.getNumTargets();
const index_t dofTargets = degreesOfFreedomMapping.getNumTargets();
const index_t rdofTargets = reducedDegreesOfFreedomMapping.getNumTargets();
#pragma omp parallel
{
#pragma omp for nowait
for (index_t i = 0; i < rnTargets; ++i)
reducedNodesId[i] = Id[reducedNodesMapping.map[i]];
#pragma omp for nowait
for (index_t i = 0; i < dofTargets; ++i)
degreesOfFreedomId[i] = Id[degreesOfFreedomMapping.map[i]];
#pragma omp for
for (index_t i = 0; i < rdofTargets; ++i)
reducedDegreesOfFreedomId[i] = Id[reducedDegreesOfFreedomMapping.map[i]];
}
}
} // namespace finley
|