1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
# -*- coding: utf-8 -*-
##############################################################################
#
# Copyright (c) 2003-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
from __future__ import print_function, division
__copyright__="""Copyright (c) 2003-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
#
# Flux corrected transport solver benchmark
# we are moving a Gaussian hill around
#
# we solve a* U_{,t} - b *u_{,ii} + c_i u_{,i} + (d_i* u)_{,i}}=0
#
# U(0)= U0 * exp ( - |x-x_0(t)|^2/(4*s**2) )
#
# with a>0, b>=0, s>0
#
# we set E=b/a v=c/a w=d/a
#
# the solution is given as u(x,t)=U0*s^dim/(s**2+E*t)^{dim/2} * exp ( - |x-x_0(t)|^2/(4*(s**2+E*t)) )
#
# with x_0(t) = X0 + (v+w)*t
#
#
# the region |x-x_0(t)|^2/(4*(s**2+E*t)) < - log(TAU) is within the domain for all time
#
#
# this holds if
#
# |x_i-X0_i-(v_i+w_i)*tend | < sqrt(- log(TAU) * 4*(s**2+E*tend))=b0 and
# |x_i-X0_i | < sqrt(- log(TAU)) * 2*s = b1 implies 0<=x_i<=l_i
#
from math import pi, ceil
from time import time as clock
from esys.finley import Rectangle, Brick
from esys.escript import *
from esys.escript.linearPDEs import LinearSinglePDE, TransportPDE
from esys.weipa import saveVTK
#
DIM=2
NE_MAX=300000
VERBOSITY=True
TOL=1.e-8
TAU=1e-10
VTK_DIR="output"
#==================
S_MIN=0
TABS = [ 'dx', 'dt', 'peclet', 'error', 'sup', 'integral', 'center', 'width', 'time' ]
a=1.
#==================
mkDir(VTK_DIR)
def uRef(dom,t,E,s,v,x0, onElements=False):
if onElements:
x=Function(dom).getX()
else:
x=dom.getX()
X=x0[:dom.getDim()]+v[:dom.getDim()]*t
u=(s**2/(s**2+E*t))**(dom.getDim()/2.) * exp(-length(x-X)**2/(4*(s**2+E*t)))
return u
def getDirection(dim, d="x"):
k=kronecker(dim)
if d=="x":
return k[0]
elif d=="y":
return k[1]
elif d=="z" and dim>2:
return k[2]
elif d=="xy":
return (k[0]+k[1])/sqrt(2.)
elif d=="yz":
return (k[1]+k[2])/sqrt(2.)
elif d=="zx" and dim>2:
return (k[2]+k[0])/sqrt(2.)
elif d=="xyz" and dim>2:
return (k[1]+k[2]+k[0])/sqrt(3.)
else:
raise ValueError("Cannot identify direction %s"%d)
def QUALITY(u_h,u_ref):
u_h_e=interpolate(u_h,u_ref.getFunctionSpace())
x=u_ref.getFunctionSpace().getX()
out = {}
out["error"]=sqrt(integrate((u_ref-u_h_e)**2))/sqrt(integrate(u_ref**2))
out["sup"]=abs(sup(u_h)-sup(u_ref))/abs(sup(u_ref))
m0_h=integrate(u_h_e)
m1_h=integrate(x*u_h_e)/m0_h
m2_h=integrate(length(x-m1_h)**2*u_h_e)
m0=integrate(u_ref)
m1=integrate(x*u_ref)/m0_h
m2=integrate(length(x-m1)**2*u_ref)
out["m0"]=abs(m0_h-m0)/abs(m0)
out["m1"]=length(m1_h-m1)/length(m1)
out["m2"]=abs(m2_h-m2)/abs(m2)
return out
#================
def XXX(dim,tend,dt, s, h,b,c,d,c_dir="x", d_dir="x", a=1., CN=True):
"""
dim - sparial dimension
s - width of initial profile
h - mesh size
"""
v_c=c/a*getDirection(dim,c_dir)
v_d=d/a*getDirection(dim,d_dir)
v = (v_c+v_d)
E=b/a
if VERBOSITY:
print("="*100)
print("XX Start test dim = %d , h=%e, b=%e, c=%e, d=%e, c_dir=%s, d_dir=%s, a=%e, s=%e"%(dim, h,b,c,d,c_dir, d_dir, a, s))
print("="*100)
print("initial width s = ",s)
print("diffusion = ",E)
print("total velocity = ",v)
print("tend = ", tend)
print("tolerance = ",TOL)
print("number of elements over s =",s/h)
b0=sqrt(- log(TAU) * 4*(s**2+E*tend))
b1=sqrt(- log(TAU)) * 2*s
X0_0=max(b1,-v[0]*tend + b0)
X0_1=max(b1,-v[1]*tend + b0)
l_0=X0_0+max(v[0]*tend + b0 , b1)
l_1=X0_1+max(v[1]*tend + b0 , b1)
NE_0=max(int(l_0/h+0.5),1)
NE_1=max(int(l_1/h+0.5),1)
if dim == 2:
if VERBOSITY: print("%d x %d grid over %e x %e with element size %e."%(NE_0,NE_1,l_0,l_1,h))
if NE_0*NE_1 > NE_MAX:
raise ValueError("too many elements %s."%(NE_0*NE_1,))
dom=Rectangle(n0=NE_0,n1=NE_1,l0=l_0,l1=l_1)
x0=[X0_0, X0_1]
else:
X0_2=max(b1,-v[2]*tend + b0)
l_2=X0_2+max(v[2]*tend + b0 , b1)
NE_2=max(int(l_2/h+0.5),1)
if VERBOSITY: print("%d x %d x %d grid over %e x %e x %e with element size %e."%(NE_0,NE_1,NE_2,l_0,l_1,l_2,h))
if NE_0*NE_1*NE_2 > NE_MAX:
raise ValueError("too many elements %s."%(NE_0*NE_1*NE_2,))
dom=Brick(n0=NE_0,n1=NE_1, ne2=NE_2, l0=l_0,l1=l_1, l2=l_2)
x0=[X0_0, X0_1, X0_2]
if VERBOSITY:
print("initial location = ",x0)
print("XX", interpolate(uRef(dom,0.,E,s,v,x0), FunctionOnBoundary(dom)))
fc_BE=TransportPDE(dom,numEquations=1)
fc_BE.setValue(M=a, A=-b*kronecker(dom), B=-v_d*a, C=-v_c*a)
fc_BE.getSolverOptions().setVerbosity(VERBOSITY)
fc_BE.getSolverOptions().setTolerance(TOL)
#
fc_BE.getSolverOptions().setPreconditioner(fc_BE.getSolverOptions().GAUSS_SEIDEL)
fc_BE.getSolverOptions().setNumSweeps(5)
if VERBOSITY: print("Backward Euler Transport created")
fc_CN=TransportPDE(dom,numEquations=1)
fc_CN.setValue(M=a, A=-b*kronecker(dom), B=-v_d*a, C=-v_c*a)
fc_CN.getSolverOptions().setVerbosity(VERBOSITY)
fc_CN.getSolverOptions().setTolerance(TOL)
#fc_CN.getSolverOptions().setPreconditioner(fc_CN.getSolverOptions().GAUSS_SEIDEL)
fc_CN.getSolverOptions().setNumSweeps(2)
if VERBOSITY: print("Crank Nicolson Transport created")
dt_CN=fc_CN.getSafeTimeStepSize()
if VERBOSITY: print("time step size by Crank Nicolson=",dt_CN)
U0=uRef(dom,0,E,s,v,x0)
U0_e=uRef(dom,0,E,s,v,x0,True)
fc_CN.setInitialSolution(U0)
fc_BE.setInitialSolution(U0)
initial_error_L2=sqrt(integrate((U0-U0_e)**2))
if VERBOSITY:
print("initial Lsup = ",Lsup(U0), Lsup(U0_e))
print("initial integral = ",integrate(U0_e))
print("initial error = ",initial_error_L2)
print("used time step size =",dt)
if not CN:
n=int(ceil(tend/dt))
if VERBOSITY:
print("Solve Backward Euler:")
print("substeps : ",n)
t0=clock()
for i in range(n): u=fc_BE.getSolution(dt)
t0=clock()-t0
else:
if VERBOSITY: print("Solve Crank Nicolson:")
dt=dt_CN
t0=clock()
u=fc_CN.getSolution(tend)
t0=clock()-t0
out=QUALITY(u,uRef(dom,tend,E,s,v,x0,True))
print("XX", interpolate(uRef(dom,tend,E,s,v,x0), FunctionOnBoundary(dom)))
out['time']=t0
out['tend']=tend
out['dt']=dt
out['dx']=h
if abs(b)>0:
out["peclet"]=length(v)*s/b
else:
out["peclet"]=9999999.
# saveVTK("bb.vtu",u0=U0,u_CN=u_CN, uRef=uRef(dom,dt2,E,s,v,X0) )
return out
# (s, peclet, b, h0) -> error < 0.01
test_set = ( (0.05, 1., 1., 0.024), )
test_set = ( (0.05, 100000., 1., 0.024), )
if False:
S_MAX=0.5/sqrt(-log(TAU))/2
s=0.05
peclet = 1000.
b=1.
c=peclet*b/s
h=0.1/4*1.2/1.25
dt=6.250000e-10
print(XXX(DIM,dt,dt,s=s,h=h,b=a*b,c=a*c,d=0,c_dir="x", d_dir="x", CN=True))
1/0
for tst in test_set:
s=tst[0]
peclet=tst[1]
b=tst[2]
h0=tst[3]
c=peclet*b/s
# find appropraiate tend:
result=XXX(DIM,1e-99,1.,s=s,h=h0,b=a*b,c=a*c,d=0,c_dir="x", d_dir="x", CN=True)
tend=result['dt']
f_test=[ 1 , 2, 4 ]
f_test=[ 1, 2, 4, 8 ]
out=""
tab_name="dt"
tab_name="tend"
tab_name="error"
dt_s=[]
for f_h in f_test:
out+="h0/%s "%f_h
h=h0/f_h
result=XXX(DIM,tend,tend,s=s,h=h,b=a*b,c=a*c,d=0,c_dir="x", d_dir="x", CN=True)
out+=", %e"%result[tab_name]
print("XX",result)
dt_s.insert(0,result['dt'])
for i in range(len(f_test)-len(dt_s)): out+=", "
for dt in dt_s:
result=XXX(DIM,tend,dt,s=s,h=h,b=a*b,c=a*c,d=0,c_dir="x", d_dir="x", CN=False)
print("XX",result)
out+=", %e"%result[tab_name]
out+="\n"
header="h\dt , "
for dt in dt_s: header+=", %e"%dt
out=header+"\n"+out
print(out)
|