File: PoissonSolverTest.py

package info (click to toggle)
python-escript 5.6-10
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,304 kB
  • sloc: python: 592,074; cpp: 136,909; ansic: 18,675; javascript: 9,411; xml: 3,384; sh: 738; makefile: 207
file content (147 lines) | stat: -rw-r--r-- 4,366 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

##############################################################################
#
# Copyright (c) 2003-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################

from __future__ import print_function, division

__copyright__="""Copyright (c) 2003-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"

from esys.escript import *
from esys.escript.linearPDEs import Poisson
from esys import finley

ne_list=[10,15,22,33,50,75]
height_list=[0.25,0.5,1.]


def getDomain(dim,ne,height):

    if dim==2:
     ne1=int(ne*height+0.5)
     mydomain=finley.Rectangle(n0=ne,n1=ne1,l1=height,order=1)
     totne=ne1*ne
    else:
     ne2=int(ne*height+0.5)
     mydomain=finley.Brick(n0=ne,n1=ne,n2=ne2,l2=height,order=2)
     totne=ne2*ne*ne
    print("%d -dimensional domain generated."%dim)
    print("height of the domain is ",height)
    print("total number of elements is ",totne)
    return mydomain


def Solve1(mydomain,height):
    print("Fully constraint solution")
    l=[1.,1.,1.]
    l[mydomain.getDim()-1]=height
    cf=ContinuousFunction(mydomain)
    x=cf.getX()
    #construct exact solution:
    u_ex=Scalar(1.,cf)
    for i in range(mydomain.getDim()):
      u_ex*=x[i]*(x[i]-l[i])
    #construct mask:
    msk=Scalar(0.,cf)
    for i in range(mydomain.getDim()):
      msk+=whereZero(x[i])+whereZero(x[i]-l[i])
    #construct right hand side 
    f=Scalar(0,cf)
    for i in range(mydomain.getDim()):
       f_p=Scalar(1,cf)
       for j in range(mydomain.getDim()):
          if i==j:
             f_p*=-2.
          else:
             f_p*=x[j]*(x[j]-l[j])
       f+=f_p

    mypde=Poisson(mydomain)
    mypde.setTolerance(1.e-10)
    mypde.setValue(f=f,q=msk)
    u=mypde.getSolution()
    error=Lsup(u-u_ex)/Lsup(u_ex)
    print("error = ",error)
    return error

def Solve2(mydomain,height):
    print("Partially constraint solution")
    l=[1.,1.,1.]
    l[mydomain.getDim()-1]=height
    print(l)
    cf=ContinuousFunction(mydomain)
    x=cf.getX()
    #construct exact solution:
    u_ex=Scalar(1.,cf)
    for i in range(mydomain.getDim()):
      u_ex*=x[i]*(2*l[i]-x[i])
    #construct mask:
    msk=Scalar(0.,cf)
    for i in range(mydomain.getDim()):
      msk+=whereZero(x[i])
    #construct right hand side 
    f=Scalar(0,cf)
    for i in range(mydomain.getDim()):
       f_p=Scalar(1,cf)
       for j in range(mydomain.getDim()):
          if i==j:
             f_p*=2.
          else:
             f_p*=x[j]*(2*l[j]-x[j])
       f+=f_p
    mypde=Poisson(mydomain)
    mypde.setTolerance(1.e-10)
    mypde.setValue(f=f,q=msk)
    u=mypde.getSolution()
    error=Lsup(u-u_ex)/Lsup(u_ex)
    print("error = ",error)
    return error


def main() :
    error=0
    for ne in ne_list:
       for dim in [2,3]:
       # for dim in [2]:
          for height in height_list:
             print("***************************************************************")
             mydomain= getDomain(dim,ne,height)
             print("---------------------------------------------------------------")
             error=max(error,Solve1(mydomain,height))
             print("---------------------------------------------------------------")
             error=max(error,Solve2(mydomain,height))
             print("***************************************************************")

    print("***************************************************************")
    print("maximum error: ",error)
    print("***************************************************************")



import profile as Pr, pstats as Ps


if __name__ == "__main__":
    pr = Pr.Profile()
    pr.calibrate(10000)
    Pr.run('main()','eos_stats')
    stats = Ps.Stats('eos_stats')
    stats.strip_dirs()
    stats.sort_stats('time')
    stats.print_stats()