1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
|
#
# this script is testing block solvers for PDEs
#
#
# - u_{j,ii} + b*u_j+ a*sum_{k<>j} (u_j-u_k) = F_j
#
# where a controls the degree of coupling and b the degree of diagonal dominance.
# a and b may have any value.
#
# The domain needs to be a unit square or cube with any type of mesh
#
#
##############################################################################
#
# Copyright (c) 2003-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
from __future__ import print_function, division
__copyright__="""Copyright (c) 2003-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
from esys.escript import *
from esys.escript.linearPDEs import LinearPDE
import esys.finley as finley
TOL=1.e-8
def runTest(dom, n=1, a=0, b=0):
print("================== TEST : n= %s a=%s b=%s ================"%(n,a,b))
DIM=dom.getDim()
normal=dom.getNormal()
mypde=LinearPDE(dom, numEquations=n, numSolutions=n)
x=dom.getX()
A=mypde.createCoefficient("A")
D=mypde.createCoefficient("D")
Y=mypde.createCoefficient("Y")
y=mypde.createCoefficient("y")
q=mypde.createCoefficient("q")
if n==1:
u_ref=Scalar(0.,Solution(dom))
for j in range(DIM):
q+=whereZero(x[j])
A[j,j]=1
y+=sin(sqrt(2.))*normal[0]
Y+=b*x[0]*sin(sqrt(2.))
D+=b
u_ref=x[0]*sin(sqrt(2.))
else:
u_ref=Data(0.,(n,),Solution(dom))
for i in range(n):
for j in range(DIM):
q[i]+=whereZero(x[j])
A[i,j,i,j]=1
if j == i%DIM: y[i]+=sin(i+sqrt(2.))*normal[j]
for j in range(n):
if i==j:
D[i,i]=b+(n-1)*a
Y[i]+=b*x[i%DIM]*sin(i+sqrt(2.))
else:
D[i,j]=-a
Y[i]+=a*(x[i%DIM]*sin(i+sqrt(2.))-x[j%DIM]*sin(j+sqrt(2.)))
u_ref[i]=x[i%DIM]*sin(i+sqrt(2.))
# - u_{j,ii} + b*u_i+ a*sum_{k<>j} (u_i-u_k) = F_j
mypde.setValue(A=A, D=D, y=y, q=q, r=u_ref, Y=Y)
mypde.getSolverOptions().setVerbosityOn()
mypde.getSolverOptions().setTolerance(TOL)
mypde.setSymmetryOn()
u=mypde.getSolution()
error=Lsup(u-u_ref)/Lsup(u_ref)
print("error = ",error)
if error > 10*TOL: print("XXXXXXXXXX Error to large ! XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX")
domain=finley.Rectangle(10,20,1,l0=1.,l1=1.0)
# or Brick or ReadMesh
runTest(dom=domain, n=1, b=0)
runTest(dom=domain, n=1, b=5)
runTest(dom=domain, n=1, b=50)
runTest(dom=domain, n=2, a=0, b=0)
runTest(dom=domain, n=2, a=5, b=0)
runTest(dom=domain, n=2, a=50, b=0)
runTest(dom=domain, n=2, a=0, b=10)
runTest(dom=domain, n=2, a=5, b=10)
runTest(dom=domain, n=2, a=50, b=10)
runTest(dom=domain, n=3, a=0, b=0)
runTest(dom=domain, n=3, a=5, b=0)
runTest(dom=domain, n=3, a=50, b=0)
runTest(dom=domain, n=3, a=0, b=10)
runTest(dom=domain, n=3, a=5, b=10)
runTest(dom=domain, n=3, a=50, b=10)
|