1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
|
######################################################
#
# Copyright (c) 2003-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
"""
Gas in Coal Seam (fully coupled version)
"""
from __future__ import print_function, division
__copyright__="""Copyright (c) 2003-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
from esys.escript.linearPDEs import LinearPDE
from esys.escript import unitsSI as U
from esys.escript.pdetools import Locator
from esys.escript import *
from esys.weipa import saveVTK
import math
USE_NODAL_WELL = False or True
class MaterialProperty(object):
"""
generic class for material properties depending on one (or several) status
variable(s)
"""
def __init__(self, *args, **kwargs):
"""
set up
"""
pass
def __call__(self, *args, **kwargs):
"""
return value of material property for given status
"""
return self.getValue( *args, **kwargs)
def getValue(self, *args, **kwargs):
"""
return value of material property for given status
:remark: needs to be overwritten
"""
raise NotImplementedError
class MaterialPropertyWithDifferential(MaterialProperty):
"""
generic class for material properties depending on one (or several) status
variable(s) where the derivative of the property with respect to the
status variables is available
"""
def getValueDifferential(self, *args, **kwargs):
"""
returns the value of the derivative of material property for given status variable
:remark: needs to be overwritten
"""
raise NotImplementedError
class Porosity(MaterialPropertyWithDifferential):
"""
defines porosity phi as function of pressure
phi = phi_p_ref /(1 + X + X**2/2 ) with X= C * (p-p_ref)
phi_p_ref is claculted from the initial porosity phi_0 at pressure p_0
"""
def __init__(self, phi_0, p_0, p_ref=1.*U.atm , C=4.0e-5/U.bar):
"""
"""
self.phi_p_ref=1 # will be overwritten later
self.p_ref=p_ref
self.C=C
# reset phi_p_ref to get phi(p_0)=phi_0
self.phi_p_ref=phi_0/self.getValue(p_0)
def getValue(self, p):
"""
returns the porosity for given pressure p
"""
X= self.C * ( p - self.p_ref )
return self.phi_p_ref * (1. + X * (1. + X/2 ) )
def getValueDifferential(self, p):
"""
returns the porosity for given pressure p
"""
X= self.C * ( p - self.p_ref )
return self.phi_p_ref * self.C * (1. + X )
class WaterDensity(MaterialPropertyWithDifferential):
"""
set water density as
rho = rho_surf (1 + X + X*X/2) with X= C * ( p - p_ref )
with rho_surf =rho_s/B_ref * gravity
"""
def __init__(self, B_ref=1., p_ref = 1.*U.atm, gravity=1., C = 0./U.bar, rho_s= 999.014 * U.kg/U.m**3):
self.rho_surf = rho_s * gravity
self.__rho_0 = self.rho_surf/B_ref
self.C=C
self.p_ref=p_ref
def getValue(self, p):
"""
returns the density for given pressure p
"""
X= self.C * ( p - self.p_ref )
return self.__rho_0 * (1+ X * (1+ X/2) )
def getValueDifferential(self, p):
"""
"""
X= self.C * ( p - self.p_ref )
return self.__rho_0 * self.C * (1+ X)
def getFormationFactor(self, p):
return self.rho_surf/self.getValue(p)
class WaterViscosity(MaterialProperty):
"""
defines viscosity of water
mu=mu_ref /(1 + X + X*X/2)
with X=-C*(p-p_ref)
"""
def __init__(self, mu_ref = 0.3*U.cPoise, p_ref = 1.*U.atm , C = 0./U.bar):
"""
set up
"""
self.mu_ref = mu_ref
self.p_ref = p_ref
self.C=C
def getValue(self, p):
"""
returns the viscosity for given pressure p
"""
X= -self.C * ( p - self.p_ref )
return self.mu_ref/(1+ X * (1+ X/2) )
class GasDensity(MaterialPropertyWithDifferential):
"""
set water density as
rho = gravity * rho_air_s /B(p)
where B is given by an interpolation table
"""
def __init__(self, p, B, gravity=1., rho_air_s=1.2041*U.kg/U.m**3):
self.rho_surf =rho_air_s * gravity
self.tab=InterpolationTable(x=p, y=B)
def getValue(self, p):
"""
returns the density for given pressure p
"""
return self.rho_surf/self.getFormationFactor(p)
def getValueDifferential(self, p):
"""
"""
B = self.getFormationFactor(p)
dBdp = self.getFormationFactorDifferential(p)
return -self.rho_surf * dBdp/(B * B)
def getFormationFactor(self, p):
return self.tab.getValue(p)
def getFormationFactorDifferential(self, p):
return self.tab.getValueDifferential(p)
class InterpolationTable(MaterialPropertyWithDifferential):
"""
a simple 1D interpolation table for escript Data object with non-equidistant nodes
"""
def __init__(self,x=[], y=[], obeyBounds=True):
"""
set up interpolation table. obeyBounds is set an exception is thrown if
the interpolation argument is below min(x) or larger than max(x). Otherwise
the value for x is set to y[0] for
"""
MaterialPropertyWithDifferential.__init__(self)
if len(x) != len(y):
raise ValueError("length of interpolation nodes and value lists need to be identical.")
if len(x) < 1 :
raise ValueError("length of interpolation nodes a list needs to at least one.")
x_ref=x[0]
for i in range(1,len(x)):
if x_ref >= x[i]:
raise ValueError("interpolation nodes need to be given in increasing order.")
x_ref=x[i]
self.__x = x
self.__y = y
self.__obeyBounds = obeyBounds
def getValue(self, x):
"""
returns the interpolated values of x
"""
X=self.__x
Y=self.__y
x0=X[0]
m0=whereNegative(x-x0)
if self.__obeyBounds:
if sup(m0) > 0:
raise ValueError("interpolation argument out of range [%e, %e]"%(X[0],X[-1]))
out=self.__x[0]
for i in range(1,len(X)):
z=(Y[i]-Y[i-1])/(X[i]-X[i-1]) * (x-X[i-1]) + Y[i-1]
out = out * m0 + z * (1-m0)
m0=whereNonPositive(x-X[i])
if self.__obeyBounds:
if inf(m0) < 1 :
raise ValueError("interpolation argument out of range [%e, %e]"%(X[0],X[-1]))
else:
out = out * m0 + X[-1] * (1-m0)
return out
def getValueDifferential(self, x):
X=self.__x
Y=self.__y
x0=X[0]
m0=whereNegative(x-x0)
if self.__obeyBounds:
if sup(m0) > 0:
raise ValueError("interpolation argument out of range [%e, %e]"%(X[0],X[-1]))
out=0.
for i in range(1,len(X)):
z=(Y[i]-Y[i-1])/(X[i]-X[i-1])
out = out * m0 + z * (1-m0)
m0=whereNonPositive(x-X[i])
if self.__obeyBounds:
if inf(m0) < 1:
raise ValueError("interpolation argument out of range [%e, %e]"%(X[0],X[-1]))
else:
out = out * m0
return out
class Well(object):
"""
generic well
:var WATER: phase identifier for water well
:var GAS: phase identifier for gas well
"""
WATER="Water"
GAS="Gas"
def __init__(self, name, domain, Q=[0.], schedule=[0.], phase="Water", BHP_limit=1.*U.atm, X0=[0.,0.,0.], *args, **kwargs):
"""
set up well
"""
if not len(schedule) == len(Q):
raise ValueError("length of schedule and Q must match.")
self.__schedule=schedule
self.__Q = Q
self.__phase=phase
self.__BHP_limit=BHP_limit
self.name=name
self.domain=domain
self.locator=Locator(DiracDeltaFunctions(self.domain),X0[:self.domain.getDim()])
self.X0=self.locator.getX()
def getLocation(self):
return self.X0
def getProductivityIndex(self):
"""
returns the productivity index of the well.
typically a Gaussian profile around the location of the well.
:note: needs to be overwritten
"""
raise NotImplementedError
def getFlowRate(self,t):
"""
returns the flow rate
"""
out=0.
for i in range(len(self.__schedule)):
if t <= self.__schedule[i]:
out=self.__Q[i]
break
return out
def getBHPLimit(self):
"""
return bottom-hole pressure limit
:note: needs to be overwritten
"""
return self.__BHP_limit
def getPhase(self):
"""
returns the pahse the well works on
"""
return self.__phase
class VerticalPeacemanWell(Well):
"""
defines a well using Peaceman's formula
"""
def __init__(self,name, domain, schedule = [0.], BHP_limit=1.*U.atm, Q=0, r=10*U.cm, X0=[0.,0.,0.], D=[1.*U.km,1.*U.km, 1.*U.m],
perm=[1.*U.cPoise,1.*U.cPoise, 1.*U.cPoise], phase=Well.WATER, s=0, decay_factor = 5):
# reset_factor=0.1):
"""
set up well
:param BHP: ottom-hole pressure
:param Q: flow rate
:param r: well radius
:param X: location
:param D: dimension of well block
:param perm: permeabilities
:param s: skin factor
"""
Well.__init__(self, name, domain, Q=Q, schedule=schedule, phase=phase,BHP_limit=BHP_limit, X0=X0)
r_el=0.28 * sqrt( sqrt(perm[1]/perm[0]) * D[0]**2 + sqrt(perm[0]/perm[1]) * D[1]**2 )\
/ ( (perm[1]/perm[0])**0.25 + (perm[1]/perm[0])**0.25 )
r_el=0.11271331774384821*D[0]
self.__PI = 2 * math.pi * D[2] * sqrt(perm[1]*perm[0]) / (log(r_el/r) + s)
self.__r = r
self.__D=D
self.r_el=r_el
if self.domain.getDim() == 3:
self.geo_fac=1
else:
self.geo_fac=1./D[2]
def getProductivityIndex(self):
"""
returns the productivity index of the well.
"""
return self.__PI
class DualPorosity(object):
"""
generic dual porosity model
"""
def __init__(self, domain, phi_f=None, phi_m=None, phi=None,
S_fg=None, S_mg=None,
perm_f_0=None, perm_f_1=None, perm_f_2=None,
perm_m_0=None, perm_m_1=None, perm_m_2=None,
k_w =None, k_g=None, mu_w =None, mu_g =None,
rho_w =None, rho_g=None,
wells=[], g=9.81*U.m/U.sec**2):
"""
set up
:param domain: domain
:type domain: `esys.escript.Domain`
:param phi_f: porosity of the fractured rock as function of the gas pressure
:type phi_f: `MaterialPropertyWithDifferential`
:param phi_m: porosity of the coal matrix as function of the gas pressure, if None phi_m = phi-phi_f
:type phi_m: `MaterialPropertyWithDifferential` or None
:param phi: total porosity if None phi=1.
:type phi: scalar or None
:param S_fg: gas saturation in the fractured rock as function of the capillary pressure p_fc=S_fg- p_f
:type S_fg: `MaterialPropertyWithDifferential`
:param S_mg: gas saturation in the coal matrix as function of the capillary pressure p_mc=p_mg-p_mw
:type S_mg: `MaterialPropertyWithDifferential`
:param perm_f_0: permeability in the x_0 direction in the fractured media
:type perm_f_0: scalar
:param perm_f_1: permeability in the x_1 direction in the fractured media
:type perm_f_1: scalar
:param perm_f_2: permeability in the x_2 direction in the fractured media
:type perm_f_2: scalar
:param perm_m_0: permeability in the x_0 direction in the coal matrix
:type perm_m_0: scalar
:param perm_m_1: permeability in the x_1 direction in the coal matrix
:type perm_m_1: scalar
:param perm_m_2: permeability in the x_2 direction in the coal matrix
:type perm_m_2: scalar
:param k_w: relative permeability of water as function of water saturation
:type k_w: `MaterialProperty`
:param k_g: relative permeability of gas as function of gas saturation
:type k_g: `MaterialProperty`
:param mu_w: viscosity of water as function of water pressure
:type mu_w: `MaterialProperty`
:param mu_g: viscosity of gas as function of gas pressure
:type mu_g: `MaterialProperty`
:param rho_w: density of water as function of water pressure
:type rho_w: `MaterialPropertyWithDifferential`
:param rho_g: density of gas as function of gas pressure
:type rho_g: `MaterialPropertyWithDifferential`
:param wells : list of wells
:type wells: list of `Well`
"""
self.domain = domain
self.phi_f = phi_f
self.phi_m = phi_m
self.phi = phi
self.S_fg = S_fg
self.S_mg = S_mg
self.perm_f = [ perm_f_0, perm_f_1, perm_f_2 ]
self.perm_m = [ perm_m_0, perm_m_1, perm_m_2 ]
self.k_w = k_w
self.k_g = k_g
self.mu_w = mu_w
self.mu_g = mu_g
self.rho_w = rho_w
self.rho_g = rho_g
self.wells=wells
self.t =0
self.g=g
self.__iter_max=1
self.__rtol=1.e-4
self.verbose=False
self.XI=0.5
def setIterationControl(self, iter_max=None, rtol=None, verbose=None, xi=None):
"""
sets parameters to control iteration process
"""
if iter_max !=None: self.__iter_max=iter_max
if rtol !=None: self.__rtol = rtol
if verbose !=None: self.verbose=verbose
if xi !=None: self.XI=xi
def update(self, dt):
self.u, self.u_old =tuple([ v.copy() for v in self.u ] ), self.u
n=0
converged=False
while n < self.__iter_max and not converged:
u=self.solvePDE(dt)
if self.verbose: print("iteration step %d:"%n)
converged=True
for i in range(len(u)):
if isinstance(u[i], Data):
norm_u=Lsup(u[i])
norm_e=Lsup(u[i]-self.u[i])
else:
norm_e=0.
norm_u=1.
if norm_u > 0:
rerr=norm_e/norm_u
else:
rerr=norm_e
if norm_e>self.__rtol * norm_u + 1.e-10: converged=False
if self.verbose: print(" comp %i: change = %e (value = %e)"%(i, norm_e,norm_u))
n+=1
self.u=u
print("iteration completed.")
self.t+=dt
class PorosityOneHalfModel(DualPorosity):
"""
Model for gas and water in double prosity model tracking water and gas
pressure in the fractured rock and gas concentration in the coal matrix.
This corresponds to the coal bed methan model in the ECLIPSE code.
"""
def __init__(self, domain, phi_f=None, phi=None, L_g=None,
perm_f_0=None, perm_f_1=None, perm_f_2=None,
k_w =None, k_g=None, mu_w =None, mu_g =None,
rho_w =None, rho_g=None, sigma=0, A_mg=0, f_rg=1.,
wells=[], g=9.81*U.m/U.sec**2):
"""
set up
:param domain: domain
:type domain: `esys.escript.Domain`
:param phi_f: porosity of the fractured rock as function of the gas pressure
:type phi_f: `MaterialPropertyWithDifferential`
:param phi: total porosity if None phi=1.
:type phi: scalar or None
:param L_g: gas adsorption as function of gas pressure
:type L_g: `MaterialPropertyWithDifferential`
:param S_fg: gas saturation in the fractured rock as function of the capillary pressure p_fc=S_fg- p_f
:type S_fg: `MaterialPropertyWithDifferential`
:param perm_f_0: permeability in the x_0 direction in the fractured media
:type perm_f_0: scalar
:param perm_f_1: permeability in the x_1 direction in the fractured media
:type perm_f_1: scalar
:param perm_f_2: permeability in the x_2 direction in the fractured media
:type perm_f_2: scalar
:param k_w: relative permeability of water as function of water saturation
:type k_w: `MaterialProperty`
:param k_g: relative permeability of gas as function of gas saturation
:type k_g: `MaterialProperty`
:param mu_w: viscosity of water as function of water pressure
:type mu_w: `MaterialProperty`
:param mu_g: viscosity of gas as function of gas pressure
:type mu_g: `MaterialProperty`
:param rho_w: density of water as function of water pressure
:type rho_w: `MaterialPropertyWithDifferential`
:param rho_g: density of gas as function of gas pressure
:type rho_g: `MaterialPropertyWithDifferential`
:param wells : list of wells
:type wells: list of `Well`
:param sigma: shape factor for gas matrix diffusion
:param A_mg: diffusion constant for gas adsorption
:param f_rg: gas re-adsorption factor
"""
DualPorosity.__init__(self, domain,
phi_f=phi_f, phi_m=None, phi=phi,
S_fg=None, S_mg=None,
perm_f_0=perm_f_0, perm_f_1=perm_f_1, perm_f_2=perm_f_2,
perm_m_0=None , perm_m_1=None, perm_m_2=None,
k_w =k_w, k_g=k_g, mu_w =mu_w, mu_g =mu_g,
rho_w =rho_w, rho_g=rho_g,
wells=wells, g=g)
self.L_g=L_g
self.sigma = sigma
self.A_mg = A_mg
self.f_rg = f_rg
self.__pde=LinearPDE(self.domain, numEquations=3, numSolutions =3)
def getPDEOptions(self):
"""
returns the `SolverOptions` of the underlying PDE
"""
return self.__pde.getSolverOptions()
def getState(self):
return self.u
def getOldState(self):
return self.u_old
def setInitialState(self, p_top=1.*U.atm, p_bottom= 1.*U.atm, S_fg=0, c_mg=None):
"""
sets the initial state
:param p: pressure
:param S_fg: gas saturation in fractured rock
:param c_mg: gas concentration in coal matrix at standart conditions. if not given it is calculated
using the gas adsorption curve.
"""
if self.domain.getDim() == 2:
p_init=Scalar((p_top + p_bottom) /2, Solution(self.domain))
else:
z=self.u.getDomain().getX()[0]
z_top=sup(z)
z_bottom=inf(z)
p_init=(p_bottom-p_top)/(z_bottom-z_top)*(z-z_top) + p_top
S_fg_init=Scalar(S_fg, Solution(self.domain))
if c_mg == None:
c_mg_init=self.L_g(p_init)
else:
c_mg_init=Scalar(c_mg, Solution(self.domain))
q_gas=Scalar(0., DiracDeltaFunctions(self.domain))
q_water=Scalar(0., DiracDeltaFunctions(self.domain))
BHP=interpolate(p_init, DiracDeltaFunctions(self.domain))
self.u=(p_init,S_fg_init, c_mg_init, BHP, q_gas, q_water)
def solvePDE(self, dt):
p_f, S_fg, c_mg, BHP_old, q_gas_old, q_water_old =self.getState()
p_f_old, S_fg_old, c_mg_old, BHP, q_gas, q_water =self.getOldState()
S_fw=1-S_fg
if self.verbose:
print("p_f range = ",inf(p_f),sup(p_f))
print("S_fg range = ",inf(S_fg),sup(S_fg))
print("S_fw range = ",inf(S_fw),sup(S_fw))
print("c_mg range = ",inf(c_mg),sup(c_mg))
print("BHP =",BHP)
print("q_gas =",q_gas)
print("q_water =",q_water)
k_fw=self.k_w(S_fw)
if self.verbose: print("k_fw range = ",inf(k_fw),sup(k_fw))
k_fg=self.k_g(S_fg)
if self.verbose: print("k_fg range = ",inf(k_fg),sup(k_fg))
mu_fw=self.mu_w(p_f)
if self.verbose: print("mu_fw range = ",inf(mu_fw),sup(mu_fw))
mu_fg=self.mu_g(p_f)
if self.verbose: print("mu_fg range = ",inf(mu_fg),sup(mu_fg))
phi_f =self.phi_f.getValue(p_f)
dphi_fdp=self.phi_f.getValueDifferential(p_f)
if self.verbose: print("phi_f range = ",inf(phi_f),sup(phi_f)," (slope %e,%e)"%(inf(dphi_fdp), sup(dphi_fdp)))
rho_fw = self.rho_w.getValue(p_f)
drho_fwdp = self.rho_w.getValueDifferential(p_f)
if self.verbose: print("rho_fw range = ",inf(rho_fw),sup(rho_fw)," (slope %e,%e)"%(inf(drho_fwdp), sup(drho_fwdp)))
rho_fg = self.rho_g.getValue(p_f)
rho_g_surf = self.rho_g.rho_surf
drho_fgdp = self.rho_g.getValueDifferential(p_f)
if self.verbose:
print("rho_fg range = ",inf(rho_fg),sup(rho_fg)," (slope %e,%e)"%(inf(drho_fgdp), sup(drho_fgdp)))
print("rho_fg surf = ",rho_g_surf)
L_g = self.L_g(p_f)
dL_gdp = self.L_g.getValueDifferential(p_f)
if self.verbose: print("L_g range = ",inf(L_g),sup(L_g)," (slope %e,%e)"%(inf(dL_gdp), sup(dL_gdp)))
A_fw = rho_fw * k_fw/mu_fw
A_fg = rho_fg * k_fg/mu_fg
m = whereNegative(L_g - c_mg)
H = self.sigma * self.A_mg * (m + (1-m) * self.f_rg * S_fg )
E_fpp= S_fw * ( rho_fw * dphi_fdp + phi_f * drho_fwdp )
E_fps= - phi_f * rho_fw
E_fsp= S_fg * ( rho_fg * dphi_fdp + phi_f * drho_fgdp )
E_fss= phi_f * rho_fg
F_fw=0.
F_fg=0.
D_fw=0.
D_fg=0.
prod_index=Scalar(0., DiracDeltaFunctions(self.domain))
geo_fac=Scalar(0., DiracDeltaFunctions(self.domain))
for I in self.wells:
prod_index.setTaggedValue(I.name, I.getProductivityIndex() )
geo_fac.setTaggedValue(I.name, I.geo_fac)
F_fp_Y = A_fw * prod_index * BHP * geo_fac
F_fs_Y = A_fg * prod_index * BHP * geo_fac
D_fpp = A_fw * prod_index * geo_fac
D_fsp = A_fg * prod_index * geo_fac
if self.domain.getDim() == 3:
F_fp_X = ( A_fw * self.g * rho_fw * self.perm_f[2] ) * kronecker(self.domain)[2]
F_fs_X = ( A_fg * self.g * rho_fg * self.perm_f[2] ) * kronecker(self.domain)[2]
else:
F_fp_X = 0 * kronecker(self.domain)[1]
F_fs_X = 0 * kronecker(self.domain)[1]
F_mg_Y = H * L_g
D=self.__pde.createCoefficient("D")
A=self.__pde.createCoefficient("A")
Y=self.__pde.createCoefficient("Y")
X=self.__pde.createCoefficient("X")
d_dirac=self.__pde.createCoefficient("d_dirac")
y_dirac=self.__pde.createCoefficient("y_dirac")
D[0,0]=E_fpp
D[0,1]=E_fps
d_dirac[0,0]=dt * D_fpp
D[1,0]=E_fsp
D[1,1]=E_fss
D[1,2]= rho_g_surf
d_dirac[1,0]=dt * D_fsp
D[0,2]= -dt * H * dL_gdp * 0
D[2,2]= 1 + dt * H
for i in range(self.domain.getDim()):
A[0,i,0,i] = dt * A_fw * self.perm_f[i]
A[1,i,1,i] = dt * A_fg * self.perm_f[i]
X[0,:]= dt * F_fp_X
X[1,:]= dt * F_fs_X
Y[0] = E_fpp * p_f_old + E_fps * S_fg_old
Y[1] = E_fsp * p_f_old + E_fss * S_fg_old + rho_g_surf * c_mg_old
Y[2] = c_mg_old + dt * ( F_mg_Y - H * dL_gdp * p_f *0 )
y_dirac[0] =dt * F_fp_Y
y_dirac[1] =dt * F_fs_Y
print("HHH D[0,0] = ",D[0,0])
print("HHH D[0,1] = ",D[0,1])
print("HHH D[0,2] = ",D[0,2])
print("HHH D[1,0] = ",D[1,0])
print("HHH D[1,1] = ",D[1,1])
print("HHH D[1,2] = ",D[1,2])
print("HHH D[2,0] = ",D[2,0])
print("HHH D[2,1] = ",D[2,1])
print("HHH D[2,2] = ",D[2,2])
print("HHH A_fw = ",A_fw)
print("HHH A_fg = ",A_fg)
print("HHH A[0,0,0,0] = ",A[0,0,0,0])
print("HHH A[0,1,0,1] = ",A[0,1,0,1])
print("HHH A[1,0,1,0] = ",A[1,0,1,0])
print("HHH A[1,1,1,1] = ",A[1,1,1,1])
print("HHH Y[0] ",Y[0])
print("HHH Y[1] ",Y[1])
print("HHH Y[2] ",Y[2])
print("HHH F_fp_Y ",F_fp_Y)
print("HHH F_fs_Y ",F_fs_Y)
print("HHH F_mg_Y ",F_mg_Y)
print("HHH H = ",H)
self.__pde.setValue(A=A, D=D, X=X, Y=Y, d_dirac=d_dirac , y_dirac=y_dirac)
u2 = self.__pde.getSolution()
# this is deals with round-off errors to maintain physical meaningful values
# we should do this in a better way to detect values that are totally wrong
p_f=u2[0]
S_fg=clip(u2[1],minval=0, maxval=1)
c_mg=clip(u2[2],minval=0)
q=Scalar(0., DiracDeltaFunctions(self.domain))
BHP_limit=Scalar(0., DiracDeltaFunctions(self.domain))
water_well_mask=Scalar(0., DiracDeltaFunctions(self.domain))
for I in self.wells:
q.setTaggedValue(I.name, I.getFlowRate(self.t+dt))
BHP_limit.setTaggedValue(I.name, I.getBHPLimit())
if I.getPhase() == Well.WATER:
water_well_mask.setTaggedValue(I.name, 1)
p_f_wells=interpolate(p_f, DiracDeltaFunctions(self.domain))
S_fg_wells=interpolate(S_fg, DiracDeltaFunctions(self.domain))
A_fw_wells= self.k_w(1-S_fg_wells)/self.mu_w(p_f_wells)*self.rho_w(p_f_wells)
A_fg_wells= self.k_g(S_fg_wells)/self.mu_g(p_f_wells)*self.rho_g(p_f_wells)
BHP=clip( p_f_wells - q/prod_index * ( m * self.rho_w.rho_surf/A_fw_wells + (1-m)* self.rho_g.rho_surf/A_fg_wells ), minval = BHP_limit)
BHP=clip( p_f_wells - q/prod_index * self.rho_w.rho_surf/A_fw_wells, minval = BHP_limit)
q_gas = prod_index * A_fg_wells * (p_f_wells - BHP)/self.rho_g.rho_surf
q_water = prod_index * A_fw_wells * (p_f_wells - BHP)/self.rho_w.rho_surf
return (p_f,S_fg, c_mg, BHP, q_gas, q_water )
|