1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
|
##############################################################################
#
# Copyright (c) 2003-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
"""
this is a convection simulation over a domain [0,L] X [0,L] x [0,H]
It is solved in dimensionless form
"""
from __future__ import print_function, division
__copyright__="""Copyright (c) 2003-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
from esys.escript import *
from esys.escript import DataManager as DM
from esys.escript.models import TemperatureCartesian, IncompressibleIsotropicFlowCartesian, Mountains, SubSteppingException
from esys.finley import Rectangle, Brick, LoadMesh
from optparse import OptionParser
from math import pi, ceil
import sys
import time
# ============================= Default Values ===============================
DIM=2 # spatial dimension
H=1. # height
L=2*H # length
NE=30 # number of elements in H-direction
PERT=0.15 # initial temperature perturbation
DT=1.e-4 # initial time step size
CREATE_TOPO=False # create topography
DT_MIN=1.e-10 # minimum time step size
T_END=10. # end time
RHO_0=100. # surface density (lf ~ RHO_0**2)
G=1. # gravitational constant
ALPHA_0=0.1 # thermal expansion coefficient (Ra ~ RHO_0**2 * ALPHA_0 = lf * ALPHA_0)
T_0=0. # surface temperature
T_1=1. # bottom temperature
C_P=1 # heat capacity
K=1. # thermal conductivity
CHI=0. # Taylor-Quinny coefficient
MUE=None # elastic shear modulus
TAU_Y=5*10**(2.5) # Drucker-Prager cohesion factor
BETA=0 # Drucker-Prager friction factor
TAU_0=2*10**(2.5) # transition stress
N=3 # power for power law
E=23*0 # activation energy
V=18*0 # activation volume
T_OFFSET=1 # temperature offset on surface (dimensionless formulation T_OFFSET=1 otherwise =0)
R=1 # gas constant
ETA_N0=1. # viscosity at surface
TOPO_SMOOTH=1e-5 # smoothing factor for extrapolation of surface velocity to interior
T_TOL=1.e-4 # tolerance temperature transport
FLOW_TOL=1.e-3 # tolerance for inconcompressible flow solver
TOPO_TOL=0.1 # tolerance for update of topography
DIAGNOSTICS_FN="diag.csv" # filename for diagnostics
VERBOSE=False # output more messages from solvers
DT_VIS=T_END/500 # time difference between visualization files
DN_VIS=5 # max. number of steps between visualization files
DN_RESTART=1000 # create restart files every DN_RESTART steps
PREFIX_RESTART="restart" # name prefix for restart directories
TOPO_ITER_MAX=20 # max. number of iteration steps to update topography
# ============================================================================
#
# read options:
#
parser = OptionParser(usage="%prog [Options]")
parser.add_option("-r", "--restart", dest="restart",
help="restart from latest checkpoint directory. It will be deleted after new data is exported.", default=False, action="store_true")
parser.add_option("-d", "--dir", dest="restart_dir",
help="locate/create restart directories under DIR.", metavar="DIR", default='.')
parser.add_option("-p", "--param", dest="param",
help="name of file to be imported ", metavar="PARAM", default=None)
(options, args) = parser.parse_args()
restart=options.restart
#
# overwrite the default options:
#
print(("<%s> Execution started."%time.asctime()))
if options.param !=None:
exec(open(options.param,'r'))
print(("Parameters imported from file ",options.param))
print("Input Parameters:")
print(("\tDimension DIM\t\t= %d"%DIM))
print(("\tHeight H\t\t\t= %s"%H))
print(("\tLength L\t\t\t= %s"%L))
print(("\tElements in H NE\t\t= %d"%NE))
print(("\tTemperature perturbation PERT\t\t= %s"%PERT))
print(("\tInitial time step size DT\t\t= %s"%DT))
print(("\tMinimum time step size DT_MIN\t\t= %s"%DT_MIN))
print(("\tEnd time T_END\t\t= %s"%T_END))
print(("\tCreate topography CREATE_TOPO\t= %s"%CREATE_TOPO))
print(("\tSurface density RHO_0\t\t= %s"%RHO_0))
print(("\tGravitational constant G\t\t\t= %s"%G))
print(("\tThermal expansion coefficient ALPHA_0\t\t= %s"%ALPHA_0))
print(("\tSurface temperature T_0\t\t= %s"%T_0))
print(("\tBottom temperature T_1\t\t= %s"%T_1))
print(("\tHeat capacity C_P\t\t= %s"%C_P))
print(("\tThermal conductivity K\t\t\t= %s"%K))
print(("\tTaylor-Quinny coefficient CHI\t\t= %s"%CHI))
print(("\tElastic shear modulus MUE\t\t= %s"%MUE))
print(("\tCohesion factor TAU_Y\t\t= %s"%TAU_Y))
print(("\tFriction factor BETA\t\t= %s"%BETA))
print(("\tTransition stress TAU_0\t\t= %s"%TAU_0))
print(("\tPower for power law N\t\t\t= %s"%N))
print(("\tViscosity at surface ETA_N0\t\t= %s"%ETA_N0))
print(("\tActivation energy E\t\t\t= %s"%E))
print(("\tActivation volume V\t\t\t= %s"%V))
print(("\tTemperature offset T_OFFSET\t\t= %s"%T_OFFSET))
print(("\tGas constant R\t\t\t= %s"%R))
print(("\tTopography smoothing TOPO_SMOOTH\t= %s"%TOPO_SMOOTH))
print(("\tTolerance for topography TOPO_TOL\t\t= %s"%TOPO_TOL))
print(("\tTransport tolerance T_TOL\t\t= %s"%T_TOL))
print(("\tFlow tolerance FLOW_TOL\t\t= %s"%FLOW_TOL))
#print("\tFile for diagnostics DIAGNOSTICS_FN\t= %s"%DIAGNOSTICS_FN)
print(("\tRestart counter increment DN_RESTART\t= %d"%DN_RESTART))
print(("\tPrefix for restart dirs PREFIX_RESTART\t= %s"%PREFIX_RESTART))
print(("\tVerbosity VERBOSE\t\t= %s"%VERBOSE))
print("Control Parameters:")
t_REF=RHO_0*C_P*H**2/K
P_REF=ETA_N0/t_REF
Ar=E/R/(T_1-T_0)
if E>0 and V>0:
V_REF=P_REF*V/E
else:
V_REF=0
T_OFFSET_REF=T_OFFSET/(T_1-T_0)
Ra=RHO_0*G*H*(T_1-T_0)*ALPHA_0/P_REF
Di=ALPHA_0*G*H/C_P
CHI_REF=CHI*K*ETA_N0/(RHO_0**2*C_P**2*(T_1-T_0)*H**2)
if CREATE_TOPO:
SURFACE_LOAD=RHO_0*G*H/P_REF
else:
SURFACE_LOAD=0.
if MUE == None:
De=None
else:
De=ETA_N0/MUE/t_REF
ETA_BOT=exp(Ar*((1.+V_REF)/(T_OFFSET_REF+1)-1./T_OFFSET_REF))*ETA_N0
print(("\tTotal #elements \t\t\t= %d"%(NE**DIM*int(L/H)**(DIM-1))))
print(("\tReference time t_REF\t\t= %s"%t_REF))
print(("\tReference pressure P_REF\t\t= %s"%P_REF))
print(("\tReference Taylor-Quinny CHI_REF\t\t= %s"%CHI_REF))
print(("\tDissipation number DI\t\t= %s"%Di))
print(("\tRayleigh number surface Ra\t\t= %s"%Ra))
print(("\tDebora number surface De\t\t= %s"%De))
print(("\tBottom viscosity \t\t\t= %s"%ETA_BOT))
print(("\tRayleigh number bottom \t\t\t= %s"%(RHO_0*G*H*(T_1-T_0)*ALPHA_0*t_REF/ETA_BOT)))
if MUE == None:
print("\tDebora number bottom \t\t\t= None")
else:
print(("\tDebora number bottom \t\t\t= %s"%(ETA_BOT/MUE/t_REF)))
print(("\tArrhenius Ar\t\t= %s"%Ar))
print(("\tSurface load factor SURFACE_LOAD\t= %s"%SURFACE_LOAD))
print(("\tScaled activation volume V_REF\t\t= %s"%V_REF))
print()
# some control variables (will be overwritten in case of a restart:
t=0 # time stamp
n=0 # time step counter
t_vis=DT_VIS # time of next visualization file export
dt=DT # current time step size
#=========================
#
# set up domain and data from scratch or from restart files
#
dataMgr=DM(formats=[DM.RESTART,DM.VTK], work_dir=options.restart_dir, restart_prefix=PREFIX_RESTART, do_restart=restart)
dataMgr.setCheckpointFrequency(DN_RESTART/DN_VIS)
if dataMgr.hasData():
dom=dataMgr.getDomain()
t=dataMgr.getValue('t')
t_vis=dataMgr.getValue('t_vis')
n=dataMgr.getValue('n')
dt=dataMgr.getValue('dt')
stress=dataMgr.getValue('stress')
v=dataMgr.getValue('v')
p=dataMgr.getValue('p')
T=dataMgr.getValue('T')
if CREATE_TOPO:
topography=dataMgr.getValue('topography')
#diagnostics_file=FileWriter(DIAGNOSTICS_FN,append=True)
print(("<%s> Restart at time step %d (t=%e) completed."%(time.asctime(),n,t)))
else:
if DIM==2:
dom=Rectangle(int(ceil(L*NE/H)),NE,l0=L/H,l1=1,order=-1,optimize=True)
else:
dom=Brick(int(ceil(L*NE/H)),int(ceil(L*NE/H)),NE,l0=L/H,l1=L/H,l2=1,order=-1,optimize=True)
x=dom.getX()
T=Scalar(1,Solution(dom))
for d in range(DIM):
if d == DIM-1:
T*=sin(x[d]/H*pi)
else:
T*=cos(x[d]/L*pi)
T=(1.-x[DIM-1])+PERT*T
v=Vector(0,Solution(dom))
stress=Tensor(0,Function(dom))
x2=ReducedSolution(dom).getX()
p=Ra*(x2[DIM-1]-0.5*x2[DIM-1]**2-0.5)
if CREATE_TOPO:
topography=Scalar(0.,Solution(dom))
#diagnostics_file=FileWriter(DIAGNOSTICS_FN,append=False)
#diagnostics_file.write("Ra = %e Lambda= %e\n"%(Ra, SURFACE_LOAD))
p_last=p
x=dom.getX()
#
# set up heat problem:
#
heat=TemperatureCartesian(dom)
print(("<%s> Temperature transport has been set up."%time.asctime()))
heat.getSolverOptions().setTolerance(T_TOL)
heat.getSolverOptions().setVerbosity(VERBOSE)
fixed_T_at=whereZero(x[DIM-1])+whereZero(H-x[DIM-1])
heat.setInitialTemperature(clip(T,T_0))
heat.setValue(rhocp=1,k=1,given_T_mask=fixed_T_at)
#
# velocity constraints:
#
fixed_v_mask=Vector(0,Solution(dom))
faces=Scalar(0.,Solution(dom))
for d in range(DIM):
if d == DIM-1:
ll = H
else:
ll = L
if CREATE_TOPO and d==DIM-1:
fixed_v_mask+=whereZero(x[d])*unitVector(d,DIM)
else:
s=whereZero(x[d])+whereZero(x[d]-ll)
faces+=s
fixed_v_mask+=s*unitVector(d,DIM)
#
# set up velocity problem
#
flow=IncompressibleIsotropicFlowCartesian(dom, stress=stress, v=v, p=p, t=t, numMaterials=2, verbose=VERBOSE)
flow.setDruckerPragerLaw(tau_Y=TAU_Y/P_REF+BETA*(1.-Function(dom).getX()[DIM-1]))
flow.setElasticShearModulus(MUE)
flow.setTolerance(FLOW_TOL)
flow.setEtaTolerance(FLOW_TOL)
flow.setExternals(fixed_v_mask=fixed_v_mask)
print(("<%s> Flow solver has been set up."%time.asctime()))
#
# topography setup
#
boundary=FunctionOnBoundary(dom).getX()[DIM-1]
top_boundary_mask=whereZero(boundary-sup(boundary))
surface_area=integrate(top_boundary_mask)
if CREATE_TOPO:
mts=Mountains(dom,eps=TOPO_SMOOTH)
mts.setTopography(topography)
print(("<%s> topography has been set up."%time.asctime()))
#
# let the show begin:
#
t1 = time.time()
print(("<%s> Start time step %d (t=%s)."%(time.asctime(),n,t)))
while t<T_END:
if CREATE_TOPO: topography_old=topography
v_old, p_old, stress_old=v, p, stress
T_old=T
#========================= solve for velocity ============================
eta_N=exp(Ar*((1.+V_REF*(1-Function(dom).getX()[DIM-1]))/(T_OFFSET_REF+interpolate(T,Function(dom)))-1./T_OFFSET_REF))
#print("viscosity range :", inf(eta_N), sup(eta_N))
flow.setPowerLaws([eta_N, eta_N ], [ 1., TAU_0], [1,N])
flow.setExternals(F=Ra*T*unitVector(DIM-1,DIM))
# if dt<=0 or not CREATE_TOPO:
if not CREATE_TOPO:
flow.update(dt, iter_max=100, verbose=False)
else:
topography_last=topography
Topo_norm, error_Topo=1,1
i=0
while error_Topo > TOPO_TOL * Topo_norm:
flow.setStatus(t, v_old, p_old, stress_old)
flow.setExternals(f=-SURFACE_LOAD*(topography-dt*v)*unitVector(DIM-1,DIM)*top_boundary_mask, restoration_factor=SURFACE_LOAD*dt*top_boundary_mask)
flow.update(dt, iter_max=100, verbose=False)
v=flow.getVelocity()
mts.setTopography(topography_old)
mts.setVelocity(v)
topography_last, topography=topography, mts.update(dt, allow_substeps=True)
error_Topo=sqrt(integrate(((topography-topography_last)*top_boundary_mask)**2))
Topo_norm=sqrt(integrate((topography*top_boundary_mask)**2))
#print("topography update step %d error = %e, norm = %e."%(i, error_Topo, Topo_norm), Lsup(v))
i+=1
if i > TOPO_ITER_MAX:
raise RuntimeError("topography did not converge after %d steps."%TOPO_ITER_MAX)
v=flow.getVelocity()
#for d in range(DIM):
#print("range %d-velocity "%d,inf(v[d]),sup(v[d]))
#print("Courant = ",inf(dom.getSize()/(length(v)+1e-19)), inf(dom.getSize()**2))
print("<%s> flow solver completed."%time.asctime())
n+=1
t+=dt
#print("influx= ",integrate(inner(v,dom.getNormal())), sqrt(integrate(length(v)**2,FunctionOnBoundary(dom))), integrate(1., FunctionOnBoundary(dom)))
print("<%s> Time step %d (t=%e) completed."%(time.asctime(),n,t))
#====================== setup temperature problem ========================
heat.setValue(v=v,Q=CHI_REF*flow.getTau()**2/flow.getCurrentEtaEff())
dt=heat.getSafeTimeStepSize()
print("<%s> New time step size is %e"%(time.asctime(),dt))
#=========================== setup topography ============================
if CREATE_TOPO:
dt=min(mts.getSafeTimeStepSize()*0.5,dt)
#print("<%s> New time step size is %e"%(time.asctime(),dt))
#print("<%s> Start time step %d (t=%e)."%(time.asctime(),n+1,t+dt))
#
# solve temperature:
#
T=heat.getSolution(dt)
print("Temperature range ",inf(T),sup(T))
print("<%s> temperature update completed."%time.asctime())
#============================== analysis =================================
#
# .... Nusselt number
#
dTdz=grad(T)[DIM-1]
Nu=1.-integrate(v[DIM-1]*T)/integrate(dTdz)
eta_bar=integrate(flow.getTau())/integrate(flow.getTau()/flow.getCurrentEtaEff())
Ra_eff= (t_REF*RHO_0*G*H*(T_1-T_0)*ALPHA_0)/eta_bar
#print("nusselt number = ",Nu)
#print("avg. eta = ",eta_bar)
#print("effective Rayleigh number = ",Ra_eff)
if CREATE_TOPO:
topo_level=integrate(topography*top_boundary_mask)/surface_area
valleys_deep=inf(topography)
mountains_heigh=sup(topography)
#print("topography level = ",topo_level)
#print("valleys deep = ",valleys_deep)
#print("mountains_heigh = ",mountains_heigh)
#diagnostics_file.write("%e %e %e %e %e %e %e\n"%(t,Nu, topo_level, valleys_deep, mountains_heigh, eta_bar, Ra_eff))
#else:
#diagnostics_file.write("%e %e %e %e\n"%(t,Nu, eta_bar, Ra_eff))
# ========================================================================
#
# create restart/visualization files:
#
if t>=t_vis or n%DN_VIS==0:
dataMgr.setTime(t)
t_vis+=DT_VIS
dataMgr.addData(t=t,n=n,t_vis=t_vis,dt=dt,T=T,v=v,eta=flow.getCurrentEtaEff(),stress=stress,p=p)
if CREATE_TOPO: dataMgr.addData(topography=topography)
dataMgr.export()
print(("<%s> Cycle %d (time %s) exported."%(time.asctime(),dataMgr.getCycle(),t)))
print(("<%s> Calculation finalized after %s seconds."%(time.asctime(),time.time()-t1)))
|