1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
|
##############################################################################
#
# Copyright (c) 2003-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
from __future__ import print_function, division
__copyright__="""Copyright (c) 2003-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
from esys.escript import *
from esys.escript.linearPDEs import LinearPDE, SolverOptions
from esys import finley
from esys.weipa import saveVTK
pres0=-100.
lame=1.
mu=0.3
rho=1.
g=9.81
# generate mesh: here 20x20 mesh of order 1
domain=finley.Rectangle(20,20,1,l0=1.0,l1=1.0)
#
# set a mask msk of type vector which is one for nodes and components set be a constraint:
#
msk=whereZero(domain.getX()[0])*[1.,1.]
#
# set the normal stress components on face elements.
# faces tagged with 21 get the normal stress [0,-press0].
#
# now the pressure is set to zero for x0 coordinates equal 1. (= right face)
press=whereZero(FunctionOnBoundary(domain).getX()[0]-1.)*pres0*[1.,0.]
# assemble the linear system:
mypde=LinearPDE(domain)
k3=kronecker(domain)
k3Xk3=outer(k3,k3)
mypde.setValue(A=mu * ( swap_axes(k3Xk3,0,3)+swap_axes(k3Xk3,1,3) ) + lame*k3Xk3,
Y=[0,-g*rho],
y=press,
q=msk,r=[0,0])
mypde.setSymmetryOn()
mypde.getSolverOptions().setVerbosityOn()
# use direct solver (default is iterative)
#mypde.getSolverOptions().setSolverMethod(SolverOptions.DIRECT)
# mypde.getSolverOptions().setPreconditioner(SolverOptions.AMG)
# solve for the displacements:
u_d=mypde.getSolution()
mypde.applyOperator(u_d)
# get the gradient and calculate the stress:
g=grad(u_d)
stress=lame*trace(g)*kronecker(domain)+mu*(g+transpose(g))
# write the hydrostatic pressure:
saveVTK("result.vtu",displacement=u_d,pressure=trace(stress)/domain.getDim())
|