1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
##############################################################################
#
# Copyright (c) 2003-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
"""
a simple comparison for row-sum and HRZ lumping in case of the advection equation
"""
from __future__ import print_function, division
__copyright__="""Copyright (c) 2003-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
from esys.escript import *
from esys.escript.linearPDEs import LinearSinglePDE, SolverOptions
from esys.escript.pdetools import Locator
from esys import finley
from math import pi
v=numpy.array([-1,0])
n=5.
def ref_u(x,t):
return whereNonPositive(x[0]-t)
#return exp(-5*(x[0]-t)**2)
def runTaylorGalerkinIncremental(order):
domain=finley.Rectangle(100,10,order)
x=domain.getX()
# test Velet scheme
dt=inf(domain.getSize()/length(v))*(1./6.)
q=whereZero(x[0])+whereZero(x[0]-1.)
mypde_f=LinearSinglePDE(domain)
mypde_f.setSymmetryOn()
mypde_f.setValue(D=1,q=q)
u_f=ref_u(x,0)
mypde_HRZ=LinearSinglePDE(domain)
mypde_HRZ.getSolverOptions().setSolverMethod(SolverOptions.HRZ_LUMPING)
mypde_HRZ.setValue(D=1,q=q)
u_HRZ=ref_u(x,0)
mypde_RS=LinearSinglePDE(domain)
mypde_RS.getSolverOptions().setSolverMethod(SolverOptions.ROWSUM_LUMPING)
mypde_RS.setValue(D=1,q=q)
u_RS=ref_u(x,0)
l=Locator(domain,[0.5,0.5])
t=0
u=ref_u(x,t)
t_list=[t]
u_list=[l(u)]
f_list=[l(u_f)]
HRZ_list=[l(u_HRZ)]
RS_list=[l(u_RS)]
print(t_list[-1], u_list[-1], f_list[-1], HRZ_list[-1] , RS_list[-1])
while t< 1./Lsup(v):
t+=dt
u=ref_u(x,t)
mypde_f.setValue(X=-dt/2.*u_f*v, r=ref_u(x,t-dt/2)-u_f)
mypde_HRZ.setValue(X=-dt/2.*u_HRZ*v, r=ref_u(x,t-dt/2)-u_f)
mypde_RS.setValue(X=-dt/2.*u_RS*v, r=ref_u(x,t-dt/2)-u_f)
u_f_h=u_f+mypde_f.getSolution()
u_HRZ_h=u_HRZ+mypde_HRZ.getSolution()
u_RS_h=u_RS+mypde_RS.getSolution()
mypde_f.setValue(X=-dt*u_f_h*v, r=u-u_f)
mypde_HRZ.setValue(X=-dt*u_HRZ_h*v, r=u-u_HRZ)
mypde_RS.setValue(X=-dt*u_RS_h*v, r=u-u_RS)
u_f=u_f+mypde_f.getSolution()
u_HRZ=u_HRZ+mypde_HRZ.getSolution()
u_RS=u_RS+mypde_RS.getSolution()
t_list.append(t)
u_list.append(l(u))
f_list.append(l(u_f))
HRZ_list.append(l(u_HRZ))
RS_list.append(l(u_RS))
print(t_list[-1], u_list[-1], f_list[-1], HRZ_list[-1] , RS_list[-1], " : ",sup(u))
import matplotlib.pyplot as plt
if getMPIRankWorld() == 0:
plt.clf()
plt.plot(t_list, u_list, '-', label="exact", linewidth=1)
plt.plot(t_list, f_list, '-', label="full", linewidth=1)
plt.plot(t_list, HRZ_list, '-', label="HRZ lumping", linewidth=1)
plt.plot(t_list, RS_list, '-', label="row sum lumping", linewidth=1)
plt.axis([0.,max(t_list),-.3,2.])
plt.xlabel('time')
plt.ylabel('displacement')
plt.legend()
plt.savefig('lumping_SUPG_du_%d.png'%order, format='png')
def runTaylorGalerkinDirect(order):
domain=finley.Rectangle(500,10,order)
x=domain.getX()
# test Velet scheme
dt=inf(domain.getSize()/length(v))*(1./6.)
q=whereZero(x[0])+whereZero(x[0]-1.)
mypde_f=LinearSinglePDE(domain)
mypde_f.setSymmetryOn()
mypde_f.setValue(D=1,q=q)
u_f=ref_u(x,0)
mypde_HRZ=LinearSinglePDE(domain)
mypde_HRZ.getSolverOptions().setSolverMethod(SolverOptions.HRZ_LUMPING)
mypde_HRZ.setValue(D=1,q=q)
u_HRZ=ref_u(x,0)
mypde_RS=LinearSinglePDE(domain)
mypde_RS.getSolverOptions().setSolverMethod(SolverOptions.ROWSUM_LUMPING)
mypde_RS.setValue(D=1,q=q)
u_RS=ref_u(x,0)
l=Locator(domain,[0.5,0.5])
t=0
u=ref_u(x,t)
t_list=[t]
u_list=[l(u)]
f_list=[l(u_f)]
HRZ_list=[l(u_HRZ)]
RS_list=[l(u_RS)]
print(t_list[-1], u_list[-1], f_list[-1], HRZ_list[-1] , RS_list[-1])
while t< 1./Lsup(v):
t+=dt
u=ref_u(x,t)
mypde_f.setValue(X=-dt/2.*u_f*v, r=ref_u(x,t-dt/2), Y=u_f )
mypde_HRZ.setValue(X=-dt/2.*u_HRZ*v, r=ref_u(x,t-dt/2), Y=u_HRZ)
mypde_RS.setValue(X=-dt/2.*u_RS*v, r=ref_u(x,t-dt/2), Y= u_RS)
u_f_h=mypde_f.getSolution()
u_HRZ_h=mypde_HRZ.getSolution()
u_RS_h=mypde_RS.getSolution()
mypde_f.setValue(X=-dt*u_f_h*v, r=u, Y=u_f )
mypde_HRZ.setValue(X=-dt*u_HRZ_h*v, r=u, Y=u_HRZ)
mypde_RS.setValue(X=-dt*u_RS_h*v, r=u, Y= u_RS)
u_f=mypde_f.getSolution()
u_HRZ=mypde_HRZ.getSolution()
u_RS=mypde_RS.getSolution()
t_list.append(t)
u_list.append(l(u))
f_list.append(l(u_f))
HRZ_list.append(l(u_HRZ))
RS_list.append(l(u_RS))
print(t_list[-1], u_list[-1], f_list[-1], HRZ_list[-1] , RS_list[-1], " : ",sup(u))
import matplotlib.pyplot as plt
if getMPIRankWorld() == 0:
plt.clf()
plt.plot(t_list, u_list, '-', label="exact", linewidth=1)
plt.plot(t_list, f_list, '-', label="full", linewidth=1)
plt.plot(t_list, HRZ_list, '-', label="HRZ lumping", linewidth=1)
plt.plot(t_list, RS_list, '-', label="row sum lumping", linewidth=1)
plt.axis([0.,max(t_list),-.3,2.])
plt.xlabel('time')
plt.ylabel('displacement')
plt.legend()
plt.savefig('lumping_SUPG_u_%d.png'%order, format='png')
# runTaylorGalerkinIncremental(1)
# runTaylorGalerkinIncremental(2)
runTaylorGalerkinDirect(1)
# runTaylorGalerkinDirect(2)
|