1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
##############################################################################
#
# Copyright (c) 2003-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
from __future__ import print_function, division
__copyright__="""Copyright (c) 2003-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
################################################
## ##
## October 2006 ##
## ##
## 3D Rayleigh-Taylor instability benchmark ##
## by Laurent Bourgouin ##
## ##
################################################
### IMPORTS ###
from esys.escript import *
import esys.finley
from esys.finley import finley
from esys.weipa import saveVTK
from esys.escript.linearPDEs import LinearPDE
from esys.escript.pdetools import Projector, SaddlePointProblem
import sys
import math
### DEFINITION OF THE DOMAIN ###
l0=1.
l1=1.
n0=10 # IDEALLY 80...
n1=10 # IDEALLY 80...
mesh=esys.finley.Brick(l0=l0, l1=l1, l2=l0, order=2, n0=n0, n1=n1, n2=n0)
### PARAMETERS OF THE SIMULATION ###
rho1 = 1.0e3 # DENSITY OF THE FLUID AT THE BOTTOM
rho2 = 1.01e3 # DENSITY OF THE FLUID ON TOP
eta1 = 1.0e2 # VISCOSITY OF THE FLUID AT THE BOTTOM
eta2 = 1.0e2 # VISCOSITY OF THE FLUID ON TOP
penalty = 1.0e3 # PENALTY FACTOR FOT THE PENALTY METHOD
g=10. # GRAVITY
t_step = 0
t_step_end = 2000
reinit_max = 30 # NUMBER OF ITERATIONS DURING THE REINITIALISATION PROCEDURE
reinit_each = 3 # NUMBER OF TIME STEPS BETWEEN TWO REINITIALISATIONS
h = Lsup(mesh.getSize())
numDim = mesh.getDim()
smooth = h*2.0 # SMOOTHING PARAMETER FOR THE TRANSITION ACROSS THE INTERFACE
### DEFINITION OF THE PDE ###
velocityPDE = LinearPDE(mesh, numEquations=numDim)
advectPDE = LinearPDE(mesh)
advectPDE.setReducedOrderOn()
advectPDE.setValue(D=1.0)
advectPDE.setSolverMethod(solver=LinearPDE.DIRECT)
reinitPDE = LinearPDE(mesh, numEquations=1)
reinitPDE.setReducedOrderOn()
reinitPDE.setSolverMethod(solver=LinearPDE.LUMPING)
my_proj=Projector(mesh)
### BOUNDARY CONDITIONS ###
xx = mesh.getX()[0]
yy = mesh.getX()[1]
zz = mesh.getX()[2]
top = whereZero(zz-l1)
bottom = whereZero(zz)
left = whereZero(xx)
right = whereZero(xx-l0)
front = whereZero(yy)
back = whereZero(yy-l0)
b_c = (bottom+top)*[1.0, 1.0, 1.0] + (left+right)*[1.0,0.0, 0.0] + (front+back)*[0.0, 1.0, 0.0]
velocityPDE.setValue(q = b_c)
pressure = Scalar(0.0, ContinuousFunction(mesh))
velocity = Vector(0.0, ContinuousFunction(mesh))
### INITIALISATION OF THE INTERFACE ###
func = -(-0.1*cos(math.pi*xx/l0)*cos(math.pi*yy/l0)-zz+0.4)
phi = func.interpolate(ReducedSolution(mesh))
def advect(phi, velocity, dt):
### SOLVES THE ADVECTION EQUATION ###
Y = phi.interpolate(Function(mesh))
for i in range(numDim):
Y -= (dt/2.0)*velocity[i]*grad(phi)[i]
advectPDE.setValue(Y=Y)
phi_half = advectPDE.getSolution()
Y = phi
for i in range(numDim):
Y -= dt*velocity[i]*grad(phi_half)[i]
advectPDE.setValue(Y=Y)
phi = advectPDE.getSolution()
print("Advection step done")
return phi
def reinitialise(phi):
### SOLVES THE REINITIALISATION EQUATION ###
s = sign(phi.interpolate(Function(mesh)))
w = s*grad(phi)/length(grad(phi))
dtau = 0.3*h
iter =0
previous = 100.0
mask = whereNegative(abs(phi)-1.2*h)
reinitPDE.setValue(q=mask, r=phi)
print("Reinitialisation started.")
while (iter<=reinit_max):
prod_scal =0.0
for i in range(numDim):
prod_scal += w[i]*grad(phi)[i]
coeff = s - prod_scal
ps2=0
for i in range(numDim):
ps2 += w[i]*grad(my_proj(coeff))[i]
reinitPDE.setValue(D=1.0, Y=phi+dtau*coeff-0.5*dtau**2*ps2)
phi = reinitPDE.getSolution()
error = Lsup((previous-phi)*whereNegative(abs(phi)-3.0*h))/h
print("Reinitialisation iteration :", iter, " error:", error)
previous = phi
iter +=1
print("Reinitialisation finalized.")
return phi
def update_phi(phi, velocity, dt, t_step):
### CALLS THE ADVECTION PROCEDURE AND THE REINITIALISATION IF NECESSARY ###
phi=advect(phi, velocity, dt)
if t_step%reinit_each ==0:
phi = reinitialise(phi)
return phi
def update_parameter(phi, param_neg, param_pos):
### UPDATES THE PARAMETERS TABLE USING THE SIGN OF PHI, A SMOOTH TRANSITION IS DONE ACROSS THE INTERFACE ###
mask_neg = whereNonNegative(-phi-smooth)
mask_pos = whereNonNegative(phi-smooth)
mask_interface = whereNegative(abs(phi)-smooth)
param = param_pos*mask_pos + param_neg*mask_neg + ((param_pos+param_neg)/2 +(param_pos-param_neg)*phi/(2.*smooth))*mask_interface
return param
class StokesProblem(SaddlePointProblem):
"""
simple example of saddle point problem
"""
def __init__(self,domain,debug=False):
super(StokesProblem, self).__init__(self,debug)
self.domain=domain
self.__pde_u=LinearPDE(domain,numEquations=self.domain.getDim(),numSolutions=self.domain.getDim())
self.__pde_u.setSymmetryOn()
self.__pde_p=LinearPDE(domain)
self.__pde_p.setReducedOrderOn()
self.__pde_p.setSymmetryOn()
def initialize(self,f=Data(),fixed_u_mask=Data(),eta=1):
self.eta=eta
A =self.__pde_u.createCoefficientOfGeneralPDE("A")
for i in range(self.domain.getDim()):
for j in range(self.domain.getDim()):
A[i,j,j,i] += self.eta
A[i,j,i,j] += self.eta
self.__pde_p.setValue(D=1/self.eta)
self.__pde_u.setValue(A=A,q=fixed_u_mask,Y=f)
def inner(self,p0,p1):
return integrate(p0*p1,Function(self.__pde_p.getDomain()))
def solve_f(self,u,p,tol=1.e-8):
self.__pde_u.setTolerance(tol)
g=grad(u)
self.__pde_u.setValue(X=self.eta*symmetric(g)+p*kronecker(self.__pde_u.getDomain()))
return self.__pde_u.getSolution()
def solve_g(self,u,tol=1.e-8):
self.__pde_p.setTolerance(tol)
self.__pde_p.setValue(X=-u)
dp=self.__pde_p.getSolution()
return dp
sol=StokesProblem(velocity.getDomain(),debug=True)
def solve_vel_uszawa(rho, eta, velocity, pressure):
### SOLVES THE VELOCITY PROBLEM USING A PENALTY METHOD FOR THE INCOMPRESSIBILITY ###
Y = Vector(0.0,Function(mesh))
Y[1] -= rho*g
sol.initialize(fixed_u_mask=b_c,eta=eta,f=Y)
velocity,pressure=sol.solve(velocity,pressure,iter_max=100,tolerance=0.01) #,accepted_reduction=None)
return velocity, pressure
def solve_vel_penalty(rho, eta, velocity, pressure):
### SOLVES THE VELOCITY PROBLEM USING A PENALTY METHOD FOR THE INCOMPRESSIBILITY ###
velocityPDE.setSolverMethod(solver=LinearPDE.DIRECT)
error = 1.0
ref = pressure*1.0
p_iter=0
while (error >= 1.0e-2):
A=Tensor4(0.0, Function(mesh))
for i in range(numDim):
for j in range(numDim):
A[i,j,i,j] += eta
A[i,j,j,i] += eta
A[i,i,j,j] += penalty*eta
Y = Vector(0.0,Function(mesh))
Y[1] -= rho*g
X = Tensor(0.0, Function(mesh))
for i in range(numDim):
X[i,i] += pressure
velocityPDE.setValue(A=A, X=X, Y=Y)
velocity = velocityPDE.getSolution()
p_iter +=1
if p_iter >=500:
print("You're screwed...")
sys.exit(1)
pressure -= penalty*eta*(trace(grad(velocity)))
error = penalty*Lsup(trace(grad(velocity)))/Lsup(grad(velocity))
print("\nPressure iteration number:", p_iter)
print("error", error)
ref = pressure*1.0
return velocity, pressure
### MAIN LOOP, OVER TIME ###
while t_step <= t_step_end:
print("######################")
print("Time step:", t_step)
print("######################")
rho = update_parameter(phi, rho1, rho2)
eta = update_parameter(phi, eta1, eta2)
velocity, pressure = solve_vel_uszawa(rho, eta, velocity, pressure)
dt = 0.3*Lsup(mesh.getSize())/Lsup(velocity)
phi = update_phi(phi, velocity, dt, t_step)
### PSEUDO POST-PROCESSING ###
print("########## Saving image", t_step, " ###########")
saveVTK("phi3D.%2.2i.vtk"%t_step,layer=phi)
t_step += 1
# vim: expandtab shiftwidth=4:
|