1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
|
##############################################################################
#
# Copyright (c) 2003-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
from __future__ import print_function, division
__copyright__="""Copyright (c) 2003-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
"""
calculation of the stress distribution around a fault from the slip on the fault
e.g. use slip_stress_mesh.py to generate mesh
:var __author__: name of author
:var __copyright__: copyrights
:var __license__: licence agreement
:var __url__: url entry point on documentation
:var __version__: version
:var __date__: date of the version
"""
__author__="Lutz Gross, Louise Kettle"
from esys.escript import *
from esys.escript.pdetools import SaddlePointProblem
from esys.escript.linearPDEs import LinearPDE
from esys.finley import ReadMesh
from esys.weipa import saveVTK
rho=0.
lam_lmbd=1.7e11
lam_mu=1.7e11
g=9.81
fstart = [50000.0, 40000.0, 10909.09090909091]
fend = [50000.0, 60000.0, 19090.909090909092]
class SlippingFault(SaddlePointProblem):
"""
simple example of saddle point problem
"""
def __init__(self,domain):
super(SlippingFault, self).__init__(self)
self.domain=domain
self.__pde_u=LinearPDE(domain,numEquations=self.domain.getDim(),numSolutions=self.domain.getDim())
self.__pde_u.setSymmetryOn()
def initialize(self,density=1.,lmbd=1., mu=1., traction=Data(),fixed_u_mask=Data(), slip=0.):
d=self.domain.getDim()
self.slip=slip
A =self.__pde_u.createCoefficientOfGeneralPDE("A")
for i in range(self.domain.getDim()):
for j in range(self.domain.getDim()):
A[i,j,j,i] += mu
A[i,j,i,j] += mu
A[i,i,j,j] += lmbd
self.__pde_u.setValue(A=A,q=fixed_u_mask,Y=-kronecker(Function(self.domain))[d-1]*g*density,y=traction)
def inner(self,p0,p1):
return integrate(inner(p0,p1),FunctionOnContactZero(self.domain))
def solve_f(self,u,p,tol=1.e-8):
self.__pde_u.setTolerance(tol)
self.__pde_u.setValue(y_contact=-p)
# print "p:",inf(p),sup(p)
# print "u:",inf(u),sup(u)
self.__pde_u.setValue(y_contact=-p)
return self.__pde_u.getSolution()
def solve_g(self,u,tol=1.e-8):
dp=Vector(0.,FunctionOnContactZero(self.domain))
h=FunctionOnContactZero(self.domain).getSize()
# print jump(u)-self.slip
dp[0]=(self.slip[0]-jump(u[0]))*lam_mu/h
dp[1]=(self.slip[1]-jump(u[1]))*lam_mu/h
dp[2]=(self.slip[2]-jump(u[2]))*lam_mu/h
return dp
dom=ReadMesh("meshfault3D.fly",integrationOrder=-1)
prop=SlippingFault(dom)
d=dom.getDim()
x=dom.getX()[0]
# x=dom.getX()[d-1]
mask=whereZero(x-inf(x))*numpy.ones((d,))
x=FunctionOnContactZero(dom).getX()
s=numpy.array([-100000.,1.,1.])
for i in range(3):
d=fend[i]-fstart[i]
if d>0:
q=(x[i]-fstart[i])/d
s=q*(1-q)*4*s
elif d<0:
q=(x[i]-fend[i])/d
s=q*(1-q)*4*s
u0=Vector(0.,Solution(dom))
p0=Vector(1.,FunctionOnContactZero(dom))
prop.initialize(fixed_u_mask=mask,slip=Data(s,FunctionOnContactZero(dom)), density=rho,lmbd=lam_lmbd, mu=lam_mu)
u,p=prop.solve(u0,p0,iter_max=50,tolerance=0.13,accepted_reduction=1.)
saveVTK("dis.vtu",u=u)
saveVTK("fault.vtu",sigma=p,s=jump(u))
|