1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
##############################################################################
#
# Copyright (c) 2003-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
from __future__ import print_function, division
__copyright__="""Copyright (c) 2003-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
"""
solvers for the stokes problem
:var __author__: name of author
:var __copyright__: copyrights
:var __license__: licence agreement
:var __url__: url entry point on documentation
:var __version__: version
:var __date__: date of the version
"""
__author__="Lutz Gross, l.gross@uq.edu.au"
from esys.escript import *
from esys.escript.pdetools import SaddlePointProblem
from esys.escript.linearPDEs import LinearPDE
from esys.finley import Rectangle
from esys.weipa import saveVTK
class SimpleStokesProblem(SaddlePointProblem):
"""
simple example of saddle point problem
"""
def __init__(self,domain):
super(SimpleStokesProblem, self).__init__(self)
self.__pde_u=LinearPDE(domain)
self.__pde_u.setSymmetryOn()
self.__pde_u.setValue(A=identityTensor4(dom))
self.__pde_p=LinearPDE(domain)
self.__pde_p.setReducedOrderOn()
self.__pde_p.setSymmetryOn()
self.__pde_p.setValue(D=1.)
def initialize(self,f=Data(),fixed_u_mask=Data()):
self.__pde_u.setValue(q=fixed_u_mask,Y=f)
def inner(self,p0,p1):
return integrate(p0*p1,Function(self.__pde_p.getDomain()))
def solve_f(self,u,p,tol=1.e-8):
self.__pde_u.setTolerance(tol)
self.__pde_u.setValue(X=grad(u)+p*kronecker(self.__pde_u.getDomain()))
return self.__pde_u.getSolution()
def solve_g(self,u,tol=1.e-8):
self.__pde_p.setTolerance(tol)
self.__pde_p.setValue(X=-u)
dp=self.__pde_p.getSolution()
return dp
class StokesProblem(SaddlePointProblem):
"""
simple example of saddle point problem
"""
def __init__(self,domain):
super(StokesProblem, self).__init__(self)
self.domain=domain
self.__pde_u=LinearPDE(domain,numEquations=self.domain.getDim(),numSolutions=self.domain.getDim())
self.__pde_u.setSymmetryOn()
self.__pde_p=LinearPDE(domain)
self.__pde_p.setReducedOrderOn()
self.__pde_p.setSymmetryOn()
def initialize(self,f=Data(),fixed_u_mask=Data(),eta=1):
self.eta=eta
A =self.__pde_u.createCoefficientOfGeneralPDE("A")
for i in range(self.domain.getDim()):
for j in range(self.domain.getDim()):
A[i,j,j,i] += self.eta
A[i,j,i,j] += self.eta
self.__pde_p.setValue(D=1./self.eta)
self.__pde_u.setValue(A=A,q=fixed_u_mask,Y=f)
def inner(self,p0,p1):
return integrate(p0*p1,Function(self.__pde_p.getDomain()))
def solve_f(self,u,p,tol=1.e-8):
self.__pde_u.setTolerance(tol)
g=grad(u)
self.__pde_u.setValue(X=self.eta*symmetric(g)+p*kronecker(self.__pde_u.getDomain()))
return self.__pde_u.getSolution()
def solve_g(self,u,tol=1.e-8):
self.__pde_p.setTolerance(tol)
self.__pde_p.setValue(X=-u)
dp=self.__pde_p.getSolution()
return dp
NE=50
dom=Rectangle(NE,NE,order=2)
# prop=SimpleStokesProblem(dom)
prop=StokesProblem(dom)
x=dom.getX()
mask=(whereZero(x[0])+whereZero(x[0]-1.)+whereZero(x[1]-1.))*unitVector(0,dom)+(whereZero(x[1]-1.)+whereZero(x[1]))*unitVector(1,dom)
u0=Vector(0.,Solution(dom))
u0[0]=x[1]*whereZero(x[1]-1.)
p0=Scalar(0,ReducedSolution(dom))
# prop.initialize(fixed_u_mask=mask)
prop.initialize(fixed_u_mask=mask,eta=10.)
u,p=prop.solve(u0,p0,tolerance=0.01)
# saveVTK("stokes.vtu",u=u,p=p,m=mask,u0=u0)
eta=whereNegative(x[1]-0.5)*1.e6+whereNonNegative(x[1]-0.5)
prop.initialize(fixed_u_mask=mask,eta=eta)
u,p=prop.solve(u0,p0,tolerance=0.01,tolerance_u=0.1,accepted_reduction=0.8)
saveVTK("stokes.vtu",u=u,p=p,m=mask,u0=u0)
# vim: expandtab shiftwidth=4:
|