File: stokes_problems.py

package info (click to toggle)
python-escript 5.6-10
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,304 kB
  • sloc: python: 592,074; cpp: 136,909; ansic: 18,675; javascript: 9,411; xml: 3,384; sh: 738; makefile: 207
file content (134 lines) | stat: -rw-r--r-- 4,658 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

##############################################################################
#
# Copyright (c) 2003-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################

from __future__ import print_function, division

__copyright__="""Copyright (c) 2003-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"

"""
solvers for the stokes problem

:var __author__: name of author
:var __copyright__: copyrights
:var __license__: licence agreement
:var __url__: url entry point on documentation
:var __version__: version
:var __date__: date of the version
"""

__author__="Lutz Gross, l.gross@uq.edu.au"

from esys.escript import *
from esys.escript.pdetools import SaddlePointProblem
from esys.escript.linearPDEs import LinearPDE
from esys.finley import Rectangle
from esys.weipa import saveVTK

class SimpleStokesProblem(SaddlePointProblem):
      """
      simple example of saddle point problem
      """
      def __init__(self,domain):
         super(SimpleStokesProblem, self).__init__(self)

         self.__pde_u=LinearPDE(domain)
         self.__pde_u.setSymmetryOn()
         self.__pde_u.setValue(A=identityTensor4(dom))

         self.__pde_p=LinearPDE(domain)
         self.__pde_p.setReducedOrderOn()
         self.__pde_p.setSymmetryOn()
         self.__pde_p.setValue(D=1.)

      def initialize(self,f=Data(),fixed_u_mask=Data()):
         self.__pde_u.setValue(q=fixed_u_mask,Y=f)
      def inner(self,p0,p1):
         return integrate(p0*p1,Function(self.__pde_p.getDomain()))

      def solve_f(self,u,p,tol=1.e-8):
         self.__pde_u.setTolerance(tol)
         self.__pde_u.setValue(X=grad(u)+p*kronecker(self.__pde_u.getDomain()))
         return  self.__pde_u.getSolution()
      def solve_g(self,u,tol=1.e-8):
         self.__pde_p.setTolerance(tol)
         self.__pde_p.setValue(X=-u) 
         dp=self.__pde_p.getSolution()
         return  dp

class StokesProblem(SaddlePointProblem):
      """
      simple example of saddle point problem
      """
      def __init__(self,domain):
         super(StokesProblem, self).__init__(self)
         self.domain=domain
         self.__pde_u=LinearPDE(domain,numEquations=self.domain.getDim(),numSolutions=self.domain.getDim())
         self.__pde_u.setSymmetryOn()

         self.__pde_p=LinearPDE(domain)
         self.__pde_p.setReducedOrderOn()
         self.__pde_p.setSymmetryOn()

      def initialize(self,f=Data(),fixed_u_mask=Data(),eta=1):
         self.eta=eta
         A =self.__pde_u.createCoefficientOfGeneralPDE("A")
         for i in range(self.domain.getDim()):
           for j in range(self.domain.getDim()):
             A[i,j,j,i] += self.eta
             A[i,j,i,j] += self.eta
         self.__pde_p.setValue(D=1./self.eta)
         self.__pde_u.setValue(A=A,q=fixed_u_mask,Y=f)

      def inner(self,p0,p1):
         return integrate(p0*p1,Function(self.__pde_p.getDomain()))

      def solve_f(self,u,p,tol=1.e-8):
         self.__pde_u.setTolerance(tol)
         g=grad(u)
         self.__pde_u.setValue(X=self.eta*symmetric(g)+p*kronecker(self.__pde_u.getDomain()))
         return  self.__pde_u.getSolution()

      def solve_g(self,u,tol=1.e-8):
         self.__pde_p.setTolerance(tol)
         self.__pde_p.setValue(X=-u) 
         dp=self.__pde_p.getSolution()
         return  dp

NE=50
dom=Rectangle(NE,NE,order=2)
# prop=SimpleStokesProblem(dom)
prop=StokesProblem(dom)
x=dom.getX()
mask=(whereZero(x[0])+whereZero(x[0]-1.)+whereZero(x[1]-1.))*unitVector(0,dom)+(whereZero(x[1]-1.)+whereZero(x[1]))*unitVector(1,dom)
u0=Vector(0.,Solution(dom))
u0[0]=x[1]*whereZero(x[1]-1.)
p0=Scalar(0,ReducedSolution(dom))
# prop.initialize(fixed_u_mask=mask)
prop.initialize(fixed_u_mask=mask,eta=10.)
u,p=prop.solve(u0,p0,tolerance=0.01)
# saveVTK("stokes.vtu",u=u,p=p,m=mask,u0=u0)

eta=whereNegative(x[1]-0.5)*1.e6+whereNonNegative(x[1]-0.5)
prop.initialize(fixed_u_mask=mask,eta=eta)
u,p=prop.solve(u0,p0,tolerance=0.01,tolerance_u=0.1,accepted_reduction=0.8)
saveVTK("stokes.vtu",u=u,p=p,m=mask,u0=u0)
          
# vim: expandtab shiftwidth=4: