1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
|
##############################################################################
#
# Copyright (c) 2003-2020 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
# Development from 2019 by School of Earth and Environmental Sciences
#
##############################################################################
from __future__ import division, print_function
__copyright__="""Copyright (c) 2003-2020 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
from esys.escript import length, wherePositive, whereNegative, exp, inf, sup
from esys.escript.modelframe import Model,ParameterSet
from esys.escript.linearPDEs import LinearPDE
from math import log
import numpy
class Sequencer(Model):
"""
Runs through time until t_end is reached.
:ivar t_end: model is terminated when t_end is passed, default 1 (in).
:type t_end: ``float``
:ivar dt_max: maximum time step size, default `Model.UNDEF_DT` (in)
:type dt_max: ``float``
:ivar t: current time stamp (in/out). By default it is initialized with zero.
:type t: ``float``
"""
def __init__(self,**kwargs):
"""
"""
super(Sequencer,self).__init__(**kwargs)
self.declareParameter(t=0.,
t_end=1.,
dt_max=Model.UNDEF_DT)
def doInitialization(self):
"""
initialize time integration
"""
self.__t_old = self.t
def doStepPreprocessing(self, dt):
self.t = self.__t_old+dt
def doStepPostprocessing(self, dt):
self.__t_old = self.t
def finalize(self):
"""
returns true when `t` has reached `t_end`
"""
return self.t >= self.t_end
def getSafeTimeStepSize(self, dt):
"""
returns `dt_max`
"""
return self.dt_max
class GaussianProfile(ParameterSet):
"""
Generates a Gaussian profile at center x_c, width width and height A
over a domain
:note: Instance variable domain - domain
:note: Instance variable x_c - center of the Gaussian profile (default [0.,0.,0.])
:note: Instance variable A - (in) height of the profile. A maybe a vector. (default 1.)
:note: Instance variable width - (in) width of the profile (default 0.1)
:note: Instance variable r - (in) radius of the circle (default = 0)
In the case that the spatial dimension is two, The third component of
x_c is dropped.
"""
def __init__(self,**kwargs):
super(GaussianProfile, self).__init__(**kwargs)
self.declareParameter(domain=None,
x_c=numpy.zeros([3]),
A=1.,
width=0.1,
r=0)
def out(self):
"""
Generate the Gaussian profile
Link against this method to get the output of this model.
"""
x = self.domain.getX()
dim = self.domain.getDim()
l = length(x-self.x_c[:dim])
m = whereNegative(l-self.r)
return (m+(1.-m)*exp(-log(2.)*(l/self.width)**2))*self.A
class InterpolateOverBox(ParameterSet):
"""
Returns values at each time. The values are defined through given values
at time node. For two dimensional domains back values are ignored.
:note: Instance variable domain - domain
:note: Instance variable value_left_bottom_front - (in) value at left,bottom,front corner
:note: Instance variable value_right_bottom_front - (in) value at right, bottom, front corner
:note: Instance variable value_left_top_front - (in) value at left,top,front corner
:note: Instance variable value_right_top_front - (in) value at right,top,front corner
:note: Instance variable value_left_bottom_back - (in) value at left,bottom,back corner
:note: Instance variable value_right_bottom_back - (in) value at right,bottom,back corner
:note: Instance variable value_left_top_back - (in) value at left,top,back corner
:note: Instance variable value_right_top_back - (in) value at right,top,back corner
"""
def __init__(self, **kwargs):
super(InterpolateOverBox, self).__init__(self)
self.declareParameter(domain=None,
value_left_bottom_front=0.,
value_right_bottom_front=0.,
value_left_top_front=0.,
value_right_top_front=0.,
value_left_bottom_back=0.,
value_right_bottom_back=0.,
value_left_top_back=0.,
value_right_top_back=0.)
def out(self):
"""
values at domain locations by bilinear interpolation of the given values.
Link against this method to get the output of this model.
"""
x = self.domain.getX()
if self.domain.getDim() == 2:
x0,x1=x[0],x[1]
left_bottom_front0,right_top_back0=inf(x0),sup(x0)
left_bottom_front1,right_top_back1=inf(x1),sup(x1)
f_right = (x0 - left_bottom_front0)/(right_top_back0 -left_bottom_front0)
f_left = 1. - f_right
f_top = (x1 - left_bottom_front1)/(right_top_back1 - left_bottom_front1)
f_bottom = 1. - f_top
out = f_left * f_bottom * self.value_left_bottom_front \
+ f_right * f_bottom * self.value_right_bottom_front \
+ f_left * f_top * self.value_left_top_front \
+ f_right * f_top * self.value_right_top_front
else:
x0,x1,x2=x[0],x[1],x[2]
left_bottom_front0,right_top_back0=inf(x0),sup(x0)
left_bottom_front1,right_top_back1=inf(x1),sup(x1)
left_bottom_front2,right_top_back2=inf(x2),sup(x2)
f_right = (x0 - left_bottom_front0)/(right_top_back0 - left_bottom_front0)
f_left = 1. - f_right
f_top = (x1 - left_bottom_front1)/(right_top_back1 - left_bottom_front1)
f_bottom = 1. - f_top
f_back = (x2 - left_bottom_front1)/(right_top_back2 - left_bottom_front2)
f_front = 1. - f_back
out = f_left * f_bottom * f_front * self.value_left_bottom_front\
+ f_right * f_bottom * f_front * self.value_right_bottom_front\
+ f_left * f_top * f_front * self.value_left_top_front\
+ f_right * f_top * f_front * self.value_right_top_front\
+ f_left * f_bottom * f_back * self.value_left_bottom_back\
+ f_right * f_bottom * f_back * self.value_right_bottom_back\
+ f_left * f_top * f_back * self.value_left_top_back\
+ f_right * f_top * f_back * self.value_right_top_back
return out
class InterpolatedTimeProfile(ParameterSet):
"""
Returns values at each time. The values are defined through given
values at time node.
value[i] defines the value at time nodes[i]. Between nodes linear
interpolation is used.
For time t<nodes[0], value[0] is used and for t>nodes[l], values[l]
is used where l=len(nodes)-1.
:note: Instance variable t - (in) current time
:note: Instance variable node - (in) list of time nodes
:note: Instance variable values - (in) list of values at time nodes
"""
def __init__(self,**kwargs):
super( InterpolatedTimeProfile, self).__init__(**kwargs)
self.declareParameter(t=0., \
nodes=[0.,1.],\
values=[1.,1.])
def out(self):
"""
current value
Link against this method to get the output of this model.
"""
l = len(self.nodes) - 1
t = self.t
if t <= self.nodes[0]:
return self.values[0]
else:
for i in range(1,l):
if t < self.nodes[i]:
m = (self.values[i-1] - self.values[i])/\
(self.nodes[i-1] - self.nodes[i])
return m*(t-self.nodes[i-1]) + self.values[i-1]
return self.values[l]
class ScalarDistributionFromTags(ParameterSet):
"""
creates a scalar distribution on a domain from tags, If tag_map is given
the tags can be given a names and tag_map is used to map it into domain tags.
:ivar domain: domain
:type domain: `esys.escript.Domain`
:ivar default: default value
:ivar tag0: tag 0
:type tag0: ``int``
:ivar value0: value for tag 0
:type value0: ``float``
:ivar tag1: tag 1
:type tag1: ``int``
:ivar value1: value for tag 1
:type value1: ``float``
:ivar tag2: tag 2
:type tag2: ``int``
:ivar value2: value for tag 2
:type value2: ``float``
:ivar tag3: tag 3
:type tag3: ``int``
:ivar value3: value for tag 3
:type value3: ``float``
:ivar tag4: tag 4
:type tag4: ``int``
:ivar value4: value for tag 4
:type value4: ``float``
:ivar tag5: tag 5
:type tag5: ``int``
:ivar value5: value for tag 5
:type value5: ``float``
:ivar tag6: tag 6
:type tag6: ``int``
:ivar value6: value for tag 6
:type value6: ``float``
:ivar tag7: tag 7
:type tag7: ``int``
:ivar value7: value for tag 7
:type value7: ``float``
:ivar tag8: tag 8
:type tag8: ``int``
:ivar value8: value for tag 8
:type value8: ``float``
:ivar tag9: tag 9
:type tag9: ``int``
:ivar value9: value for tag 9
:type value9: ``float``
"""
def __init__(self,**kwargs):
super(ScalarDistributionFromTags, self).__init__(**kwargs)
self.declareParameter(domain=None,
default=0.,
tag0=None,
value0=0.,
tag1=None,
value1=0.,
tag2=None,
value2=0.,
tag3=None,
value3=0.,
tag4=None,
value4=0.,
tag5=None,
value5=0.,
tag6=None,
value6=0.,
tag7=None,
value7=0.,
tag8=None,
value8=0.,
tag9=None,
value9=0.)
def out(self):
"""
returns a `esys.escript.Data` object
Link against this method to get the output of this model.
"""
d=Scalar(self.default,Function(self.domain))
if not self.tag0 is None: d.setTaggedValue(self.tag0,self.value0)
if not self.tag1 is None: d.setTaggedValue(self.tag1,self.value1)
if not self.tag2 is None: d.setTaggedValue(self.tag2,self.value2)
if not self.tag3 is None: d.setTaggedValue(self.tag3,self.value3)
if not self.tag4 is None: d.setTaggedValue(self.tag4,self.value4)
if not self.tag5 is None: d.setTaggedValue(self.tag5,self.value5)
if not self.tag6 is None: d.setTaggedValue(self.tag6,self.value6)
if not self.tag7 is None: d.setTaggedValue(self.tag7,self.value7)
if not self.tag8 is None: d.setTaggedValue(self.tag8,self.value8)
if not self.tag9 is None: d.setTaggedValue(self.tag9,self.value9)
return d
class SmoothScalarDistributionFromTags(ParameterSet):
"""
creates a smooth scalar distribution on a domain from region tags
:ivar domain: domain
:type domain: `esys.escript.Domain`
:ivar default: default value
:ivar tag0: tag 0
:type tag0: ``int``
:ivar value0: value for tag 0
:type value0: ``float``
:ivar tag1: tag 1
:type tag1: ``int``
:ivar value1: value for tag 1
:type value1: ``float``
:ivar tag2: tag 2
:type tag2: ``int``
:ivar value2: value for tag 2
:type value2: ``float``
:ivar tag3: tag 3
:type tag3: ``int``
:ivar value3: value for tag 3
:type value3: ``float``
:ivar tag4: tag 4
:type tag4: ``int``
:ivar value4: value for tag 4
:type value4: ``float``
:ivar tag5: tag 5
:type tag5: ``int``
:ivar value5: value for tag 5
:type value5: ``float``
:ivar tag6: tag 6
:type tag6: ``int``
:ivar value6: value for tag 6
:type value6: ``float``
:ivar tag7: tag 7
:type tag7: ``int``
:ivar value7: value for tag 7
:type value7: ``float``
:ivar tag8: tag 8
:type tag8: ``int``
:ivar value8: value for tag 8
:type value8: ``float``
:ivar tag9: tag 9
:type tag9: ``int``
:ivar value9: value for tag 9
:type value9: ``float``
"""
def __init__(self,**kwargs):
super(SmoothScalarDistributionFromTags, self).__init__(**kwargs)
self.declareParameter(domain=None,
default=0.,
tag0=None,
value0=0.,
tag1=None,
value1=0.,
tag2=None,
value2=0.,
tag3=None,
value3=0.,
tag4=None,
value4=0.,
tag5=None,
value5=0.,
tag6=None,
value6=0.,
tag7=None,
value7=0.,
tag8=None,
value8=0.,
tag9=None,
value9=0.)
def __update(self,tag,tag_value,value):
if self.__pde==None:
self.__pde=LinearPDE(self.domain,numSolutions=1)
mask=Scalar(0.,Function(self.domain))
mask.setTaggedValue(tag,1.)
self.__pde.setValue(Y=mask)
mask=wherePositive(abs(self.__pde.getRightHandSide()))
value*=(1.-mask)
value+=tag_value*mask
return value
def out(self):
"""
returns a `esys.escript.Data` object
Link against this method to get the output of this model.
"""
d=Scalar(self.default,Solution(self.domain))
self.__pde=None
if not self.tag0 is None: d=self.__update(self.tag0,self.value0,d)
if not self.tag1 is None: d=self.__update(self.tag1,self.value1,d)
if not self.tag2 is None: d=self.__update(self.tag2,self.value2,d)
if not self.tag3 is None: d=self.__update(self.tag3,self.value3,d)
if not self.tag4 is None: d=self.__update(self.tag4,self.value4,d)
if not self.tag5 is None: d=self.__update(self.tag5,self.value5,d)
if not self.tag6 is None: d=self.__update(self.tag6,self.value6,d)
if not self.tag7 is None: d=self.__update(self.tag7,self.value7,d)
if not self.tag8 is None: d=self.__update(self.tag8,self.value8,d)
if not self.tag9 is None: d=self.__update(self.tag9,self.value9,d)
return d
class LinearCombination(ParameterSet):
"""
Returns a linear combination of the f0*v0+f1*v1+f2*v2+f3*v3+f4*v4
:ivar f0: numerical object or None, default=None (in)
:ivar v0: numerical object or None, default=None (in)
:ivar f1: numerical object or None, default=None (in)
:ivar v1: numerical object or None, default=None (in)
:ivar f2: numerical object or None, default=None (in)
:ivar v2: numerical object or None, default=None (in)
:ivar f3: numerical object or None, default=None (in)
:ivar v3: numerical object or None, default=None (in)
:ivar f4: numerical object or None, default=None (in)
:ivar v4: numerical object or None, default=None (in)
"""
def __init__(self,**kwargs):
super(LinearCombination, self).__init__(**kwargs)
self.declareParameter(f0=None, \
v0=None, \
f1=None, \
v1=None, \
f2=None, \
v2=None, \
f3=None, \
v3=None, \
f4=None, \
v4=None)
def out(self):
"""
returns f0*v0+f1*v1+f2*v2+f3*v3+f4*v4.
Link against this method to get the output of this model.
"""
if not self.f0 is None and not self.v0 is None:
fv0 = self.f0*self.v0
else:
fv0 = None
if not self.f1 is None and not self.v1 is None:
fv1 = self.f1*self.v1
else:
fv1 = None
if not self.f2 is None and not self.v2 is None:
fv2 = f2*v2
else:
fv2 = None
if not self.f3 is None and not self.v3 is None:
fv3 = self.f3*self.v3
else:
fv3 = None
if not self.f4 is None and not self.v4 is None:
fv4 = self.f4*self.v4
else:
fv4 = None
if fv0 is None:
out = 0.
else:
out = fv0
if not fv1 is None:
out += fv1
if not fv2 is None:
out += fv2
if not fv3 is None:
out += fv3
return out
class MergeConstraints(ParameterSet):
"""
Returns a linear combination of the f0*v0+f1*v1+f2*v2+f3*v3+f4*v4
"""
def __init__(self,**kwargs):
super(MergeConstraints, self).__init__(**kwargs)
self.declareParameter(location_of_constraint0=None, \
value_of_constraint0=None, \
location_of_constraint1=None, \
value_of_constraint1=None, \
location_of_constraint2=None, \
value_of_constraint2=None, \
location_of_constraint3=None, \
value_of_constraint3=None, \
location_of_constraint4=None, \
value_of_constraint4=None)
def location_of_constraint(self):
"""
return the values used to constrain a solution
:return: the mask marking the locations of the constraints
:rtype: `escript.Scalar`
"""
out_loc=0
if not self.location_of_constraint0 is None:
out_loc=wherePositive(out_loc+wherePositive(self.location_of_constraint0))
if not self.location_of_constraint1 is None:
out_loc=wherePositive(out_loc+wherePositive(self.location_of_constraint1))
if not self.location_of_constraint2 is None:
out_loc=wherePositive(out_loc+wherePositive(self.location_of_constraint2))
if not self.location_of_constraint3 is None:
out_loc=wherePositive(out_loc+wherePositive(self.location_of_constraint3))
return out_loc
def value_of_constraint(self):
"""
return the values used to constrain a solution
:return: values to be used at the locations of the constraints. If
``value`` is not given ``None`` is rerturned.
:rtype: `escript.Scalar`
"""
out_loc=0
out=0
if not self.location_of_constraint0 is None:
tmp=wherePositive(self.location_of_constraint0)
out=out*(1.-tmp)+self.value_of_constraint0*tmp
out_loc=wherePositive(out_loc+tmp)
if not self.location_of_constraint1 is None:
tmp=wherePositive(self.location_of_constraint1)
out=out*(1.-tmp)+self.value_of_constraint1*tmp
out_loc=wherePositive(out_loc+tmp)
if not self.location_of_constraint2 is None:
tmp=wherePositive(self.location_of_constraint2)
out=out*(1.-tmp)+self.value_of_constraint2*tmp
out_loc=wherePositive(out_loc+tmp)
if not self.location_of_constraint3 is None:
tmp=wherePositive(self.location_of_constraint3)
out=out*(1.-tmp)+self.value_of_constraint3*tmp
out_loc=wherePositive(out_loc+tmp)
return out
# vim: expandtab shiftwidth=4:
|