1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
|
# -*- coding: utf-8 -*-
##############################################################################
#
# Copyright (c) 2003-2020 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
# Development from 2019 by School of Earth and Environmental Sciences
#
##############################################################################
from __future__ import print_function, division
__copyright__="""Copyright (c) 2003-2020 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
"""
mesh generation using gmsh
:var __author__: name of author
:var __copyright__: copyrights
:var __license__: licence agreement
:var __url__: url entry point on documentation
:var __version__: version
:var __date__: date of the version
"""
__author__="Lutz Gross, l.gross@uq.edu.au"
from . import design
import tempfile
import os
from .primitives import Point, Spline, BezierCurve, BSpline, Line, Arc, CurveLoop, RuledSurface, PlaneSurface, SurfaceLoop, Volume, PropertySet, Ellipse
from esys.escript import getMPIWorldMax, getMPIRankWorld, gmshGeo2Msh
from .transformations import DEG
class Design(design.AbstractDesign):
"""
Design for gmsh.
"""
DELAUNAY="Delauny"
MESHADAPT="MeshAdapt"
FRONTAL="Frontal"
NETGEN="Frontal"
TETGEN="Delauny"
def __init__(self, dim=3, element_size=1., order=1, keep_files=False):
"""
Initializes the gmsh design.
:param dim: spatial dimension
:param element_size: global element size
:param order: element order
:param keep_files: flag to keep work files
"""
design.AbstractDesign.__init__(self,dim=dim,element_size=element_size,order=order,keep_files=keep_files)
self.__mshname_set = False
self.__scriptname=""
self.setScriptFileName()
self.setOptions()
self.setFileFormat(self.GMSH)
def setScriptFileName(self, name=None):
"""
Sets the filename for the gmsh input script. If no name is given a name
with extension `geo` is generated.
"""
if self.__scriptname:
os.unlink(self.__scriptname)
if name == None:
self.__scriptname_set=False
tmp_f_id=tempfile.mkstemp(suffix=".geo")
self.__scriptname=tmp_f_id[1]
os.close(tmp_f_id[0])
else:
self.__scriptname=name
self.__scriptname_set=True
def getScriptFileName(self):
"""
Returns the name of the gmsh script file.
"""
return self.__scriptname
def setOptions(self, algorithm=None, optimize_quality=True, smoothing=1,
curvature_based_element_size=False, algorithm2D=None,
algorithm3D=None, generate_hexahedra=False,
random_factor=None):
"""
Sets options for the mesh generator.
:param algorithm: selects 2D meshing algorithm
:type algorithm: in self.DELAUNAY, self.MESHADAPT, self.FRONTAL
:param algorithm2D: must be equal to algorithm
:type algorithm2D: in self.DELAUNAY, self.MESHADAPT, self.FRONTAL
:param algorithm3D: selects 3D meshing algorithm
:type algorithm3D: in self.DELAUNAY, self.FRONTAL
:param curvature_based_element_size: switch for curvature based element size adaption
:type curvature_based_element_size: ```bool```
:param smoothing: number of smoothing steps
:type smoothing: non-negative ```int```
:param optimize_quality: switch for mesh quality optimization
:type optimize_quality: ```bool```
:param generate_hexahedra: switch for using quadrangles/hexahedra elements everywhere.
:type generate_hexahedra: ```bool```
:param random_factor: used in the 2D meshing algorithm (should be increased if RandomFactor * size(triangle)/size(model) approaches machine accuracy)
:type random_factor: positive ```float```
"""
if random_factor==None: random_factor=1.e-9
if not random_factor > 0:
raise ValueError("random_factor must be positive.")
smoothing=int(smoothing)
if not smoothing > 0:
raise ValueError("smoothing must be positive.")
if algorithm3D is None:
algorithm3D=self.FRONTAL
if algorithm is None:
if algorithm2D is None:
algorithm2D=self.MESHADAPT
else:
if not algorithm2D is None:
if not algorithm == algorithm2D:
raise ValueError("argument algorithm (=%s) and algorithm2D (=%s) must have the same value if set."%(algorithm, algorithm2D))
algorithm2D = algorithm
if not algorithm2D in [ self.DELAUNAY, self.MESHADAPT, self.FRONTAL ]:
raise ValueError("illegal 2D meshing algorithm %s."%algorithm2D)
if not algorithm3D in [ self.DELAUNAY, self.FRONTAL ]:
raise ValueError("illegal 3D meshing algorithm %s."%algorithm3D)
self.__curvature_based_element_size=curvature_based_element_size
self.__algo2D=algorithm2D
self.__algo3D=algorithm3D
self.__optimize_quality=optimize_quality
self.__smoothing=smoothing
self.__generate_hexahedra=generate_hexahedra
self.__random_factor=random_factor
def getOptions(self, name=None):
"""
Returns the current options for the mesh generator.
"""
if name is None:
return {"optimize_quality" : self.__optimize_quality ,
"smoothing" : self.__smoothing,
"curvature_based_element_size" : self.__curvature_based_element_size,
"generate_hexahedra" : self.__generate_hexahedra,
"algorithm2D" : self.__algo2D,
"algorithm3D" : self.__algo3D ,
"random_factor" : self.__random_factor }
else:
return self.getOption()[name]
def __del__(self):
"""
Cleans up.
"""
try:
if not self.keepFiles():
if not self.__scriptname_set: #i.e. it's a tempfile
os.unlink(self.getScriptFileName())
if not self.__mshname_set: #i.e. it's a tempfile
os.unlink(self.getMeshFileName())
except OSError:
pass # The file might not have been created and there is nothing
# to do about a "failure" here anyway
def getScriptHandler(self):
"""
Returns a handler to the script file to generate the geometry.
In the current implementation a script file name is returned.
"""
if getMPIRankWorld() == 0:
open(self.getScriptFileName(),"w").write(self.getScriptString())
return self.getScriptFileName()
def getMeshHandler(self):
"""
Returns a handle to a mesh meshing the design. In the current
implementation a mesh file name in gmsh format is returned.
"""
verbosity = 3
ret = gmshGeo2Msh(self.getScriptHandler(), self.getMeshFileName(),
self.getDim(), self.getElementOrder(), verbosity)
if ret > 0:
self.setKeepFilesOn() #no files to delete, so don't try to
raise RuntimeError("Could not build mesh using gmsh.\n" + \
"Is gmsh available?")
return self.getMeshFileName()
def getScriptString(self):
"""
Returns the gmsh script to generate the mesh.
"""
h=self.getElementSize()
out='// generated by esys.pycad\nGeneral.Terminal = 1;\nGeneral.ExpertMode = 1;\n'
options=self.getOptions()
if options["optimize_quality"]:
out += "Mesh.Optimize = 1;\n"
else:
out += "Mesh.Optimize = 0;\n"
if options["curvature_based_element_size"]:
out += "Mesh.CharacteristicLengthFromCurvature = 1;\n"
else:
out += "Mesh.CharacteristicLengthFromCurvature = 0;\n"
if options["generate_hexahedra"]:
if self.getDim() == 2:
out += "Mesh.SubdivisionAlgorithm = 1;\n"
else:
out += "Mesh.SubdivisionAlgorithm = 2;\n"
else:
out += "Mesh.SubdivisionAlgorithm = 0;\n"
out += "Mesh.Smoothing = %d;\n"%options["smoothing"]
out += "Mesh.RandomFactor = %.14e;\n"%options["random_factor"]
if options["algorithm2D"] == self.MESHADAPT:
out += "Mesh.Algorithm = 1; // = MeshAdapt\n"
elif options["algorithm2D"] == self.DELAUNAY:
out += "Mesh.Algorithm = 5; // = Delaunay\n"
elif options["algorithm2D"] == self.FRONTAL:
out += "Mesh.Algorithm = 6; // = Frontal\n"
if options["algorithm3D"] == self.DELAUNAY:
out += "Mesh.Algorithm3D = 1; // = Delaunay\n"
elif options["algorithm3D"] == self.FRONTAL:
out += "Mesh.Algorithm3D = 4; // = Frontal\n"
for prim in self.getAllPrimitives():
p=prim.getUnderlyingPrimitive()
if isinstance(p, Point):
c=p.getCoordinates()
#out+="Point(%s) = {%f , %f, %f , %f };\n"%(p.getID(),c[0],c[1],c[2], p.getLocalScale()*h)
out += "Point(%s) = {%.14e, %.14e, %.14e, %.14e};\n"%(p.getID(),c[0],c[1],c[2], p.getLocalScale()*h)
elif isinstance(p, Spline):
out += "Spline(%s) = {%s};\n"%(p.getID(),self.__mkArgs(p.getControlPoints()))+self.__mkTransfiniteLine(p)
elif isinstance(p, BezierCurve):
out += "Bezier(%s) = {%s};\n"%(p.getID(),self.__mkArgs(p.getControlPoints()))+self.__mkTransfiniteLine(p)
elif isinstance(p, BSpline):
out += "BSpline(%s) = {%s};\n"%(p.getID(),self.__mkArgs(p.getControlPoints()))+self.__mkTransfiniteLine(p)
elif isinstance(p, Line):
out += "Line(%s) = {%s, %s};\n"%(p.getID(),p.getStartPoint().getDirectedID(),p.getEndPoint().getDirectedID())+self.__mkTransfiniteLine(p)
elif isinstance(p, Arc):
out += "Circle(%s) = {%s, %s, %s};\n"%(p.getID(),p.getStartPoint().getDirectedID(),p.getCenterPoint().getDirectedID(),p.getEndPoint().getDirectedID())+self.__mkTransfiniteLine(p)
elif isinstance(p, Ellipse):
out += "Ellipse(%s) = {%s, %s, %s, %s};\n"%(p.getID(),p.getStartPoint().getDirectedID(),p.getCenterPoint().getDirectedID(),p.getPointOnMainAxis().getDirectedID(), p.getEndPoint().getDirectedID())+self.__mkTransfiniteLine(p)
elif isinstance(p, CurveLoop):
out += "Line Loop(%s) = {%s};\n"%(p.getID(),self.__mkArgs(p.getCurves()))
elif isinstance(p, RuledSurface):
out += "Ruled Surface(%s) = {%s};\n"%(p.getID(),p.getBoundaryLoop().getDirectedID())+self.__mkTransfiniteSurface(p)
elif isinstance(p, PlaneSurface):
line = self.__mkArgs(p.getHoles())
if len(line) > 0:
out += "Plane Surface(%s) = {%s, %s};\n"%(p.getID(),p.getBoundaryLoop().getDirectedID(), line)+self.__mkTransfiniteSurface(p)
else:
out += "Plane Surface(%s) = {%s};\n"%(p.getID(),p.getBoundaryLoop().getDirectedID())+self.__mkTransfiniteSurface(p)
elif isinstance(p, SurfaceLoop):
out += "Surface Loop(%s) = {%s};\n"%(p.getID(),self.__mkArgs(p.getSurfaces()))
elif isinstance(p, Volume):
line = self.__mkArgs(p.getHoles())
if len(line)>0:
out += "Volume(%s) = {%s, %s};\n"%(p.getID(),p.getSurfaceLoop().getDirectedID(), line)+self.__mkTransfiniteVolume(p)
else:
out += "Volume(%s) = {%s};\n"%(p.getID(),p.getSurfaceLoop().getDirectedID())+self.__mkTransfiniteVolume(p)
elif isinstance(p, PropertySet):
if p.getNumItems() > 0:
dim=p.getDim()
line = "Physical "
if dim==0:
line += "Point"
elif dim==1:
line += "Line"
elif dim==2:
line += "Surface"
else:
line += "Volume"
out += line+"(" + str(p.getID()) + ") = {"+self.__mkArgs(p.getItems(),useAbs=True)+"};\n"
else:
raise TypeError("unable to pass %s object to gmsh."%str(type(p)))
return out
def __mkArgs(self, args, useAbs=False):
line = ""
for i in args:
id = i.getDirectedID()
if useAbs: id=abs(id)
if len(line) > 0:
line += ", %s"%id
else:
line = "%s"%id
return line
def __mkTransfiniteLine(self, p):
s = p.getElementDistribution()
if not s == None:
if s[2]:
out="Transfinite Line{%d} = %d Using Bump %s;\n"%(p.getID(),s[0],s[1])
else:
out="Transfinite Line{%d} = %d Using Progression %s;\n"%(p.getID(),s[0],s[1])
else:
out=""
return out
def __mkTransfiniteSurface(self, p):
out = ""
o = p.getRecombination()
s = p.getTransfiniteMeshing()
if not s == None:
out2 = ""
if not s[0] is None:
for q in s[0]:
if len(out2)==0:
out2 = "%s"%q.getID()
else:
out2 = "%s,%s"%(out2, q.getID())
if s[1] is None:
out += "Transfinite Surface{%s} = {%s};\n"%(p.getID(),out2)
else:
out += "Transfinite Surface{%s} = {%s} %s;\n"%(p.getID(),out2,s[1])
if not o is None:
out += "Recombine Surface {%s} = %f;\n"%(p.getID(), o/DEG)
return out
def __mkTransfiniteVolume(self, p):
out=""
s=p.getTransfiniteMeshing()
if not s == None:
if len(s)>0:
out2=""
for q in s[0]:
if len(out2)==0:
out2="%s"%q.getID()
else:
out2="%s,%s"%(out2,q.getID())
out+="Transfinite Volume{%s} = {%s};\n"%(p.getID(),out2)
else:
out+="Transfinite Volume{%s};\n"%(p.getID(),)
return out
|