File: primitives.py

package info (click to toggle)
python-escript 5.6-10
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,304 kB
  • sloc: python: 592,074; cpp: 136,909; ansic: 18,675; javascript: 9,411; xml: 3,384; sh: 738; makefile: 207
file content (2009 lines) | stat: -rw-r--r-- 68,672 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
# -*- coding: utf-8 -*-

##############################################################################
#
# Copyright (c) 2003-2020 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
# Development from 2019 by School of Earth and Environmental Sciences
#
##############################################################################

from __future__ import print_function, division

__copyright__="""Copyright (c) 2003-2020 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"

"""
Geometrical Primitives

the concept is inspired by gmsh and very much focused on the fact that
the classes are used to wrk with gmsh.

:var __author__: name of author
:var __copyright__: copyrights
:var __license__: licence agreement
:var __url__: url entry point on documentation
:var __version__: version
:var __date__: date of the version
"""

__author__="Lutz Gross, l.gross@uq.edu.au"

try:
   import numpy
   numpyImported=True
except:
   numpyImported=False

import numpy
from .transformations import _TYPE, Translation, Dilation, Transformation, DEG
import math 


def resetGlobalPrimitiveIdCounter():
   """
   Initializes the global primitive ID counter.
   """
   global global_primitive_id_counter
   global_primitive_id_counter=1

def setToleranceForColocation(tol=1.e-11):
   """
   Sets the global tolerance for colocation checks to ``tol``.
   """
   global global_tolerance_for_colocation
   global_tolerance_for_colocation=tol

def getToleranceForColocation():
   """
   Returns the global tolerance for colocation checks.
   """
   return global_tolerance_for_colocation

resetGlobalPrimitiveIdCounter()
setToleranceForColocation()


class PrimitiveBase(object):
    """
    Template for a set of primitives.
    """
    def __init__(self):
       """
       Initializes the PrimitiveBase instance object.
       """
       pass

    # for python2   
    def __cmp__(self,other):
       """
       Compares object with other by comparing the absolute value of the ID.
       """
       if isinstance(other, PrimitiveBase):
           return cmp(self.getID(),other.getID())
       else:
           return -1

    def __lt__(self,other):
       if isinstance(other, PrimitiveBase):
           return self.getID()<other.getID()
       else:
           return False
           
    def __eq__(self,other):
       if isinstance(other, PrimitiveBase):
           return self.getID()==other.getID()
       else:
           return False
       
    def __hash__(self):
       return self.getID()
       
    def getConstructionPoints(self):
        """
        Returns the points used to construct the primitive.
        """
        out=[]
        for i in self.getPrimitives():
           if isinstance(i,Point): out.append(i)
        return out

    def getPrimitives(self):
        """
        Returns a list of primitives used to construct the primitive with no
        double entries.
        """
        out=[]
        for p in self.collectPrimitiveBases():
            if not p  in out: out.append(p)
        return out

    def copy(self):
       """
       Returns a deep copy of the object.
       """
       return self.substitute({})

    def modifyBy(self,transformation):
       """
       Modifies the coordinates by applying a transformation.
       """
       for p in self.getConstructionPoints(): p.modifyBy(transformation)

    def __add__(self,other):
        """
        Returns a new object shifted by ``other``.
        """
        return self.apply(Translation(numpy.array(other,_TYPE)))

    def __sub__(self,other):
        """
        Returns a new object shifted by ``-other``.
        """
        return self.apply(Translation(-numpy.array(other,_TYPE)))

    def __iadd__(self,other):
        """
        Shifts the point inplace by ``other``.
        """
        self.modifyBy(Translation(numpy.array(other,_TYPE)))
        return self

    def __isub__(self,other):
        """
        Shifts the point inplace by ``-other``.
        """
        self.modifyBy(Translation(-numpy.array(other,_TYPE)))
        return self

    def __imul__(self,other):
        """
        Modifies object by applying `Transformation` ``other``. If ``other``
        is not a `Transformation` it is first tried to be converted.
        """
        if isinstance(other,int) or isinstance(other,float):
            trafo=Dilation(other)
        elif isinstance(other,numpy.ndarray):
            trafo=Translation(other)
        elif isinstance(other,Transformation):
            trafo=other
        else:
            raise TypeError("cannot convert argument to a Transformation class object.")
        self.modifyBy(trafo)
        return self

    def __rmul__(self,other):
        """
        Applies `Transformation` ``other`` to object. If ``other`` is not a
        `Transformation` it is first tried to be converted.
        """
        if isinstance(other,int) or isinstance(other,float):
            trafo=Dilation(other)
        elif isinstance(other,numpy.ndarray):
            trafo=Translation(other)
        elif isinstance(other,Transformation):
            trafo=other
        else:
            raise TypeError("cannot convert argument to Transformation class object.")
        return self.apply(trafo)


    def setLocalScale(self,factor=1.):
       """
       Sets the local refinement factor.
       """
       for p in self.getConstructionPoints(): p.setLocalScale(factor)

    def apply(self,transformation):
        """
        Returns a new object by applying the transformation.
        """
        out=self.copy()
        out.modifyBy(transformation)
        return out


class Primitive(object):
    """
    Class that represents a general primitive.
    """
    def __init__(self):
       """
       Initializes the Primitive instance object with a unique ID.
       """
       global global_primitive_id_counter
       self.__ID=global_primitive_id_counter
       global_primitive_id_counter+=1

    def getID(self):
       """
       Returns the primitive ID.
       """
       return self.__ID

    def getDirectedID(self):
        """
        Returns the primitive ID where a negative sign means that reversed
        ordering is used.
        """
        return self.getID()

    def __repr__(self):
        return "%s(%s)"%(self.__class__.__name__,self.getID())

    def getUnderlyingPrimitive(self):
        """
        Returns the underlying primitive.
        """
        return self

    def hasSameOrientation(self,other):
        """
        Returns True if ``other`` is the same primitive and has the same
        orientation, False otherwise.
        """
        return self == other and isinstance(other,Primitive)

    def __neg__(self):
        """
        Returns a view onto the curve with reversed ordering.

        :note: This method is overwritten by subclasses.
        """
        raise NotImplementedError("__neg__ is not implemented.")

    def substitute(self,sub_dict):
        """
        Returns a copy of self with substitutes for the primitives used to
        construct it given by the dictionary ``sub_dict``. If a substitute for
        the object is given by ``sub_dict`` the value is returned, otherwise a
        new instance with substituted arguments is returned.

        :note: This method is overwritten by subclasses.
        """
        raise NotImplementedError("substitute is not implemented.")

    def collectPrimitiveBases(self):
        """
        Returns a list of primitives used to construct the primitive. It may
        contain primitives twice.

        :note: This method is overwritten by subclasses.
        """
        raise NotImplementedError("collectPrimitiveBases is not implemented.")

    def isColocated(self,primitive):
        """
        Returns True if the two primitives are located at the same position.

        :note: This method is overwritten by subclasses.
        """
        raise NotImplementedError("isCollocated is not implemented.")

    def isReversed(self):
        """
        returns True is the primitive is a reversed primitive.
        """
        return False


class ReversePrimitive(object):
    """
    A view onto a primitive creating a reverse orientation.
    """
    def __init__(self,primitive):
       """
       Instantiates a view onto ``primitive``.
       """
       if not isinstance(primitive, Primitive):
           raise ValueError("argument needs to be a Primitive class object.")
       self.__primitive=primitive

    def getID(self):
       """
       Returns the primitive ID.
       """
       return self.__primitive.getID()

    def getUnderlyingPrimitive(self):
        """
        Returns the underlying primitive.
        """
        return self.__primitive

    def hasSameOrientation(self,other):
        """
        Returns True if ``other`` is the same primitive and has the same
        orientation as self.
        """
        return self == other and isinstance(other, ReversePrimitive)

    def __repr__(self):
       return "-%s(%s)"%(self.__primitive.__class__.__name__,self.getID())

    def getDirectedID(self):
        """
        Returns the primitive ID where a negative signs means that reversed
        ordering is used.
        """
        return -self.__primitive.getID()

    def substitute(self,sub_dict):
        """
        Returns a copy of self with substitutes for the primitives used to
        construct it given by the dictionary ``sub_dict``. If a substitute for
        the object is given by ``sub_dict`` the value is returned, otherwise a
        new instance with substituted arguments is returned.
        """
        if self not in sub_dict:
            sub_dict[self]=-self.getUnderlyingPrimitive().substitute(sub_dict)
        return sub_dict[self]

    def __neg__(self):
          """
          Returns a view onto the curve with reversed ordering.
          """
          return self.__primitive

    def collectPrimitiveBases(self):
        """
        Returns a list of primitives used to construct the primitive. It may
        contain primitives twice.
        """
        return self.__primitive.collectPrimitiveBases()

    def isColocated(self,primitive):
       """
       Returns True if the two primitives are located at the same position.

       :note: This method is overwritten by subclasses.
       """
       return self.__primitive.isColocated(primitive)

    def isReversed(self):
        """
        returns True is the primitive is a reversed primitive.
        """
        return True

class Point(Primitive, PrimitiveBase):
    """
    A three-dimensional point.
    """
    def __init__(self,x=0.,y=0.,z=0.,local_scale=1.):
       """
       Creates a point with coordinates ``x``, ``y``, ``z`` with the local
       refinement factor ``local_scale``. If ``x`` is a list or similar it needs to have
       length less or equal 3. In this case ``y`` and ``z`` are overwritten by 
       ``x[1]`` and ``x[2]``.
       """
       PrimitiveBase.__init__(self)
       Primitive.__init__(self)
       try:
          l=len(x)
          if l>3:
              raise ValueError("x has a lanegth bigger than 3.")
          if l>1:
             y=x[1]
          else:
             y=0.
          if l>2:
             z=x[2]
          else:
             z=0.
          if l>0:
             x=x[0]
          else:
             x=0.
       except TypeError:
          pass
       a=numpy.array([x,y,z], _TYPE)
       self.setCoordinates(a)
       self.setLocalScale(local_scale)

    def setLocalScale(self,factor=1.):
       """
       Sets the local refinement factor.
       """
       if factor<=0.:
          raise ValueError("scaling factor must be positive.")
       self.__local_scale=factor

    def getLocalScale(self):
       """
       Returns the local refinement factor.
       """
       return self.__local_scale

    def getCoordinates(self):
       """
       Returns the coordinates of the point as a ``numpy.ndarray`` object.
       """
       return self._x

    def getCoordinatesAsList(self):
       """
       Returns the coordinates of the point as a ``list`` object.
       """
       return [self._x[0], self._x[1], self._x[2] ]

    def setCoordinates(self,x):
       """
       Sets the coordinates of the point from a ``numpy.ndarray`` object ``x``.
       """
       if not isinstance(x, numpy.ndarray):
          self._x=numpy.array(x,_TYPE)
       else:
          self._x=x

    def collectPrimitiveBases(self):
       """
       Returns primitives used to construct the primitive.
       """
       return [self]

    def isColocated(self,primitive):
       """
       Returns True if the `Point` ``primitive`` is collocated (has the same
       coordinates) with self. That is, if
       *|self - primitive| <= tol * max(\|self\|,|primitive|)*.
       """
       if isinstance(primitive,Point):
          primitive=primitive.getCoordinates()
          c=self.getCoordinates()
          d=c-primitive
          if numpyImported:
            return numpy.dot(d,d)<=getToleranceForColocation()**2*max(numpy.dot(c,c),numpy.dot(primitive,primitive))
          else:
            return numpy.dot(d,d)<=getToleranceForColocation()**2*max(numpy.dot(c,c),numpy.dot(primitive,primitive))
       else:
          return False

    def substitute(self,sub_dict):
        """
        Returns a copy of self with substitutes for the primitives used to
        construct it given by the dictionary ``sub_dict``. If a substitute for
        the object is given by ``sub_dict`` the value is returned, otherwise a
        new instance with substituted arguments is returned.
        """
        if self not in sub_dict:
           c=self.getCoordinates()
           sub_dict[self]=Point(c[0],c[1],c[2],local_scale=self.getLocalScale())
        return sub_dict[self]

    def modifyBy(self,transformation):
        """
        Modifies the coordinates by applying the given transformation.
        """
        self.setCoordinates(transformation(self.getCoordinates()))

    def __neg__(self):
        """
        Returns a view of the object with reverse orientation. As a point has
        no direction the object itself is returned.
        """
        return self

class Manifold1D(PrimitiveBase):
    """
    General one-dimensional manifold in 1D defined by a start and end point.
    """
    def __init__(self):
        """
        Initializes the one-dimensional manifold.
        """
        PrimitiveBase.__init__(self)
        self.__apply_elements=False

    def getStartPoint(self):
         """
         Returns the start point.
         """
         raise NotImplementedError()

    def getEndPoint(self):
         """
         Returns the end point.
         """
         raise NotImplementedError()

    def getBoundary(self):
        """
        Returns a list of the zero-dimensional manifolds forming the boundary
        of the curve.
        """
        return [ self.getStartPoint(), self.getEndPoint()]


    def setElementDistribution(self,n,progression=1,createBump=False):
        """
        Defines the number of elements on the line. If set it overwrites the local length setting which would be applied.
        The progression factor ``progression`` defines the change of element size between neighboured elements. If ``createBump`` is set
        progression is applied towards the center of the line.

        :param n: number of elements on the line
        :type n: ``int``
        :param progression: a positive progression factor
        :type progression: positive ``float``
        :param createBump: of elements on the line
        :type createBump: ``bool``
        """
        if isinstance(self, ReversePrimitive):
           self.getUnderlyingPrimitive().setElementDistribution(n,progression,createBump)
        else:
           if n<1:
              raise ValueError("number of elements must be positive.")
           if progression<=0:
              raise ValueError("progression factor must be positive.")
           self.__apply_elements=True
           self.__n=n
           self.__progression_factor=progression
           self.__createBump=createBump

    def resetElementDistribution(self):
        """
        removes the a previously set element distribution from the line.
        """
        if isinstance(self, ReversePrimitive):
           self.getUnderlyingPrimitive().resetElementDistribution()
        else:
           self.__apply_elements=False

    def getElementDistribution(self):
        """
        Returns the element distribution.

        :return: the tuple of the number of elements, the progression factor and the bump flag. If no element distribution is set ``None`` is returned
        :rtype: ``tuple``
        """
        if isinstance(self, ReversePrimitive):
           return self.getUnderlyingPrimitive().getElementDistribution()
        else:
           if self.__apply_elements:
              return (self.__n, self.__progression_factor, self.__createBump)
           else:
              return None

class CurveBase(Manifold1D):
    """
    Base class for curves. A Curve is defined by a set of control points.
    """
    def __init__(self):
        """
        Initializes the curve.
        """
        Manifold1D.__init__(self)

    def __len__(self):
        """
        Returns the number of control points.
        """
        return len(self.getControlPoints())

    def getStartPoint(self):
        """
        Returns the start point.
        """
        return self.getControlPoints()[0]

    def getEndPoint(self):
        """
        Returns the end point.
        """
        return self.getControlPoints()[-1]

    def getControlPoints(self):
        """
        Returns a list of the points.
        """
        raise NotImplementedError()

class Curve(CurveBase, Primitive):
    """
    A curve defined through a list of control points.
    """
    def __init__(self,*points):
       """
       Defines a curve from control points given by ``points``.
       """
       if len(points)==1: 
           points=points[0]
           if not hasattr(points,'__iter__'): raise ValueError("Curve needs at least two points")
       if len(points)<2:
           raise ValueError("Curve needs at least two points")
       i=0
       for p in points:
              i+=1
              if not isinstance(p,Point): raise TypeError("%s-th argument is not a Point object."%i)
       self.__points=points
       CurveBase.__init__(self)
       Primitive.__init__(self)

    def getControlPoints(self):
        """
        Returns a list of the points.
        """
        return self.__points

    def __neg__(self):
        """
        Returns a view onto the curve with reversed ordering.
        """
        return ReverseCurve(self)

    def substitute(self,sub_dict):
        """
        Returns a copy of self with substitutes for the primitives used to
        construct it given by the dictionary ``sub_dict``. If a substitute for
        the object is given by ``sub_dict`` the value is returned, otherwise a
        new instance with substituted arguments is returned.
        """
        if self not in sub_dict:
            new_p=[]
            for p in self.getControlPoints(): new_p.append(p.substitute(sub_dict))
            sub_dict[self]=self.__class__(*tuple(new_p))
        return sub_dict[self]

    def collectPrimitiveBases(self):
       """
       Returns the primitives used to construct the curve.
       """
       out=[self]
       for p in self.getControlPoints(): out+=p.collectPrimitiveBases()
       return out

    def isColocated(self,primitive):
       """
       Returns True if curves are at the same position.
       """
       if hasattr(primitive,"getUnderlyingPrimitive"):
         if isinstance(primitive.getUnderlyingPrimitive(),self.__class__):
           if len(primitive) == len(self):
             cp0=self.getControlPoints()
             cp1=primitive.getControlPoints()
             match=True
             for i in range(len(cp0)):
                if not cp0[i].isColocated(cp1[i]):
                   match=False
                   break
             if not match:
                for i in range(len(cp0)):
                   if not cp0[i].isColocated(cp1[len(cp0)-1-i]):
                      return False
             return True
       return False

class ReverseCurve(CurveBase, ReversePrimitive):
    """
    A curve defined through a list of control points.
    """
    def __init__(self,curve):
       """
       Defines a curve from control points.
       """
       if not isinstance(curve, Curve):
           raise TypeError("ReverseCurve needs to be an instance of Curve")
       CurveBase.__init__(self)
       ReversePrimitive.__init__(self,curve)

    def getControlPoints(self):
         """
         Returns a list of the points.
         """
         out=[p for p in self.getUnderlyingPrimitive().getControlPoints()]
         out.reverse()
         return tuple(out)

class Spline(Curve):
    """
    A spline curve defined through a list of control points.
    """
    pass

class BezierCurve(Curve):
    """
    A Bezier curve.
    """
    pass

class BSpline(Curve):
    """
    A BSpline curve. Control points may be repeated.
    """
    pass

class Line(Curve):
    """
    A line is defined by two points.
    """
    def __init__(self,*points):
        """
        Defines a line with start and end point.
        """
        if len(points)!=2:
           raise TypeError("Line needs two points")
        Curve.__init__(self,*points)

class ArcBase(Manifold1D):
    """
    Base class for arcs.
    """
    def __init__(self):
          """
          Initializes the arc.
          """
          Manifold1D.__init__(self)

    def collectPrimitiveBases(self):
       """
       Returns the primitives used to construct the Arc.
       """
       out=[self]
       out+=self.getStartPoint().collectPrimitiveBases()
       out+=self.getEndPoint().collectPrimitiveBases()
       out+=self.getCenterPoint().collectPrimitiveBases()
       return out

    def getCenterPoint(self):
         """
         Returns the center.
         """
         raise NotImplementedError()

class Arc(ArcBase, Primitive):
    """
    Defines an arc which is strictly smaller than pi.
    """
    def __init__(self,center,start,end):
       """
       Creates an arc defined by the start point, end point and center.
       """
       if not isinstance(center,Point): raise TypeError("center needs to be a Point object.")
       if not isinstance(end,Point): raise TypeError("end needs to be a Point object.")
       if not isinstance(start,Point): raise TypeError("start needs to be a Point object.")
       if center.isColocated(end): raise TypeError("center and start point are collocated.")
       if center.isColocated(start): raise TypeError("center end end point are collocated.")
       if start.isColocated(end): raise TypeError("start and end are collocated.")
       # TODO: check length of circle.
       ArcBase.__init__(self)
       Primitive.__init__(self)
       self.__center=center
       self.__start=start
       self.__end=end

    def __neg__(self):
       """
       Returns a view onto the curve with reversed ordering.
       """
       return ReverseArc(self)

    def getStartPoint(self):
       """
       Returns the start point.
       """
       return self.__start

    def getEndPoint(self):
       """
       Returns the end point.
       """
       return self.__end

    def getCenterPoint(self):
       """
       Returns the center point.
       """
       return self.__center

    def substitute(self,sub_dict):
        """
        Returns a copy of self with substitutes for the primitives used to
        construct it given by the dictionary ``sub_dict``. If a substitute for
        the object is given by ``sub_dict`` the value is returned, otherwise a
        new instance with substituted arguments is returned.
        """
        if self not in sub_dict:
            sub_dict[self]=Arc(self.getCenterPoint().substitute(sub_dict),self.getStartPoint().substitute(sub_dict),self.getEndPoint().substitute(sub_dict))
        return sub_dict[self]

    def isColocated(self,primitive):
       """
       Returns True if curves are at the same position.
       """
       if hasattr(primitive,"getUnderlyingPrimitive"):
          if isinstance(primitive.getUnderlyingPrimitive(),Arc):
            return (self.getCenterPoint().isColocated(primitive.getCenterPoint())) and ( \
                   (self.getEndPoint().isColocated(primitive.getEndPoint()) and self.getStartPoint().isColocated(primitive.getStartPoint()) ) \
                or (self.getEndPoint().isColocated(primitive.getStartPoint()) and self.getStartPoint().isColocated(primitive.getEndPoint()) ) )
       return False

class ReverseArc(ArcBase, ReversePrimitive):
    """
    Defines an arc which is strictly smaller than pi.
    """
    def __init__(self,arc):
       """
       Creates an arc defined by the start point, end point and center.
       """
       if not isinstance(arc, Arc):
           raise TypeError("ReverseCurve needs to be an instance of Arc")
       ArcBase.__init__(self)
       ReversePrimitive.__init__(self,arc)

    def getStartPoint(self):
       """
       Returns the start point.
       """
       return self.getUnderlyingPrimitive().getEndPoint()

    def getEndPoint(self):
       """
       Returns the end point.
       """
       return self.getUnderlyingPrimitive().getStartPoint()

    def getCenterPoint(self):
       """
       Returns the center point.
       """
       return self.getUnderlyingPrimitive().getCenterPoint()

class EllipseBase(Manifold1D):
    """
    Base class for ellipses.
    """
    def __init__(self):
       """
       Initializes the ellipse.
       """
       Manifold1D.__init__(self)

    def collectPrimitiveBases(self):
       """
       Returns the primitives used to construct the ellipse.
       """
       out=[self]
       out+=self.getStartPoint().collectPrimitiveBases()
       out+=self.getEndPoint().collectPrimitiveBases()
       out+=self.getCenterPoint().collectPrimitiveBases()
       out+=self.getPointOnMainAxis().collectPrimitiveBases()
       return out

class Ellipse(EllipseBase, Primitive):
    """
    Defines an ellipse which is strictly smaller than pi.
    """
    def __init__(self,center,point_on_main_axis,start,end):
       """
       Creates an ellipse defined by the start point, end point, the center
       and a point on the main axis.
       """
       if not isinstance(center,Point): raise TypeError("center needs to be a Point object.")
       if not isinstance(end,Point): raise TypeError("end needs to be a Point object.")
       if not isinstance(start,Point): raise TypeError("start needs to be a Point object.")
       if not isinstance(point_on_main_axis,Point): raise TypeError("point on main axis needs to be a Point object.")
       if center.isColocated(end): raise TypeError("center and start point are collocated.")
       if center.isColocated(start): raise TypeError("center end end point are collocated.")
       if center.isColocated(point_on_main_axis): raise TypeError("center and point on main axis are colocated.")
       if start.isColocated(end): raise TypeError("start and end point are collocated.")
       # TODO: check length of circle.
       EllipseBase.__init__(self)
       Primitive.__init__(self)
       self.__center=center
       self.__start=start
       self.__end=end
       self.__point_on_main_axis=point_on_main_axis

    def __neg__(self):
       """
       Returns a view onto the curve with reversed ordering.
       """
       return ReverseEllipse(self)

    def getStartPoint(self):
       """
       Returns the start point.
       """
       return self.__start

    def getEndPoint(self):
       """
       Returns the end point.
       """
       return self.__end

    def getCenterPoint(self):
       """
       Returns the center.
       """
       return self.__center

    def getPointOnMainAxis(self):
       """
       Returns a point on the main axis.
       """
       return self.__point_on_main_axis

    def substitute(self,sub_dict):
        """
        Returns a copy of self with substitutes for the primitives used to
        construct it given by the dictionary ``sub_dict``. If a substitute for
        the object is given by ``sub_dict`` the value is returned, otherwise a
        new instance with substituted arguments is returned.
        """
        if self not in sub_dict:
            sub_dict[self]=Ellipse(self.getCenterPoint().substitute(sub_dict),
                                   self.getPointOnMainAxis().substitute(sub_dict),
                                   self.getStartPoint().substitute(sub_dict),
                                   self.getEndPoint().substitute(sub_dict))
        return sub_dict[self]


    def isColocated(self,primitive):
       """
       Returns True if curves are at the same position.
       """
       if hasattr(primitive,"getUnderlyingPrimitive"):
          if isinstance(primitive.getUnderlyingPrimitive(),Ellipse):
            self_c=self.getCenterPoint().getCoordinates()
            p=self.getPointOnMainAxis().getCoordinates()-self_c
            q=primitive.getPointOnMainAxis().getCoordinates()-self_c
            # are p and q orthogonal or collinear?
            len_p=math.sqrt(p[0]**2+p[1]**2+p[2]**2)
            len_q=math.sqrt(q[0]**2+q[1]**2+q[2]**2)
            p_q= abs(p[0]*q[0]+p[1]*q[1]+p[2]*q[2])
            return ((p_q <= getToleranceForColocation() * len_q * p_q) or \
                    (abs(p_q - len_q * p_q) <= getToleranceForColocation())) and \
                   self.getCenterPoint().isColocated(primitive.getCenterPoint()) and \
                   ( \
                    (self.getEndPoint().isColocated(primitive.getEndPoint()) and \
                     self.getStartPoint().isColocated(primitive.getStartPoint()) ) \
                    or \
                    (self.getEndPoint().isColocated(primitive.getStartPoint()) and \
                     self.getStartPoint().isColocated(primitive.getEndPoint())) \
                   )
       return False

class ReverseEllipse(EllipseBase, ReversePrimitive):
    """
    Defines an ellipse which is strictly smaller than pi.
    """
    def __init__(self,arc):
       """
       Creates an instance of a reverse view to an ellipse.
       """
       if not isinstance(arc, Ellipse):
           raise TypeError("ReverseCurve needs to be an instance of Ellipse")
       EllipseBase.__init__(self)
       ReversePrimitive.__init__(self,arc)

    def getStartPoint(self):
       """
       Returns the start point.
       """
       return self.getUnderlyingPrimitive().getEndPoint()

    def getEndPoint(self):
       """
       Returns the end point.
       """
       return self.getUnderlyingPrimitive().getStartPoint()

    def getCenterPoint(self):
       """
       Returns the center point.
       """
       return self.getUnderlyingPrimitive().getCenterPoint()

    def getPointOnMainAxis(self):
       """
       Returns a point on the main axis.
       """
       return self.getUnderlyingPrimitive().getPointOnMainAxis()


class CurveLoop(Primitive, PrimitiveBase):
    """
    An oriented loop of one-dimensional manifolds (= curves and arcs).

    The loop must be closed and the `Manifold1D` s should be oriented
    consistently.
    """
    def __init__(self,*curves):
       """
       Creates a polygon from a list of line curves. The curves must form a
       closed loop.
       """
       if len(curves)==1: 
           curves=curves[0]
           if not hasattr(curves,'__iter__'): raise ValueError("CurveLoop needs at least two points")
       if len(curves)<2:
            raise ValueError("At least two curves have to be given.")
       for i in range(len(curves)):
           if not isinstance(curves[i],Manifold1D):
              raise TypeError("%s-th argument is not a Manifold1D object."%i)
       # for the curves a loop:
       #used=[ False for i in curves]
       self.__curves=[]
       for c in curves:
            if not c in self.__curves: self.__curves.append(c)
       Primitive.__init__(self)
       PrimitiveBase.__init__(self)
       

    def getCurves(self):
       """
       Returns the curves defining the CurveLoop.
       """
       return self.__curves

    def __neg__(self):
       """
       Returns a view onto the curve with reversed ordering.
       """
       return ReverseCurveLoop(self)

    def __len__(self):
       """
       Returns the number of curves in the CurveLoop.
       """
       return len(self.getCurves())

    def collectPrimitiveBases(self):
       """
       Returns primitives used to construct the CurveLoop.
       """
       out=[self]
       for c in self.getCurves(): out+=c.collectPrimitiveBases()
       return out

    def substitute(self,sub_dict):
        """
        Returns a copy of self with substitutes for the primitives used to
        construct it given by the dictionary ``sub_dict``. If a substitute for
        the object is given by ``sub_dict`` the value is returned, otherwise a
        new instance with substituted arguments is returned.
        """
        if self not in sub_dict:
            new_c=[]
            for c in self.getCurves(): new_c.append(c.substitute(sub_dict))
            sub_dict[self]=CurveLoop(*tuple(new_c))
        return sub_dict[self]

    def isColocated(self,primitive):
       """
       Returns True if each curve is collocated with a curve in ``primitive``.
       """
       if hasattr(primitive,"getUnderlyingPrimitive"):
          if isinstance(primitive.getUnderlyingPrimitive(),CurveLoop):
             if len(primitive) == len(self):
                cp0=self.getCurves()
                cp1=primitive.getCurves()
                for c0 in cp0:
                    colocated = False
                    for c1 in cp1:
                         colocated = colocated or c0.isColocated(c1)
                    if not colocated: return False
                return True
       return False

    def getPolygon(self):
       """
       Returns a list of start/end points of the 1D manifold from the loop.
       If not closed an exception is thrown.
       """
       curves=self.getCurves()
       s=[curves[0].getStartPoint(), curves[0].getEndPoint()]
       found= [ curves[0], ]
       restart=True
       while restart:
          restart=False
          for k in curves:
              if not k in found:
                  if k.getStartPoint() == s[-1]:
                      found.append(k)
                      if hasattr(k,"getControlPoints"): s+=k.getControlPoints()[1:-1]
                      if k.getEndPoint() == s[0]: 
                           if len(found) == len(curves):
                             return s
                           else:
                             raise ValueError("loop %s is not closed."%self.getID())
                      s.append(k.getEndPoint())
                      restart=True
                      break
          if not restart:
               raise ValueError("loop %s is not closed."%self.getID())           

class ReverseCurveLoop(ReversePrimitive, PrimitiveBase):
    """
    An oriented loop of one-dimensional manifolds (= curves and arcs).

    The loop must be closed and the one-dimensional manifolds should be
    oriented consistently.
    """
    def __init__(self,curve_loop):
       """
       Creates a polygon from a list of line curves. The curves must form a
       closed loop.
       """
       if not isinstance(curve_loop, CurveLoop):
           raise TypeError("arguments need to be an instance of CurveLoop.")
       ReversePrimitive.__init__(self, curve_loop)
       PrimitiveBase.__init__(self)

    def getCurves(self):
       """
       Returns the curves defining the CurveLoop.
       """
       return [ -c for c in  self.getUnderlyingPrimitive().getCurves() ]

    def __len__(self):
        return len(self.getUnderlyingPrimitive())
#=
class Manifold2D(PrimitiveBase):
    """
    General two-dimensional manifold.
 
    :note: Instance variable LEFT - left element orientation when meshing with transfinite meshing
    :note: Instance variable RIGHT - right element orientation when meshing with transfinite meshing
    :note: Instance variable ALTERNATE - alternate element orientation when meshing with transfinite meshing
    """
    LEFT="Left"
    RIGHT="Right"
    ALTERNATE="Alternate"
    def __init__(self):
       """
       Creates a two-dimensional manifold.
       """
       PrimitiveBase.__init__(self)
       self.__transfinitemeshing=False
       self.__recombination_angle=None

    def getBoundary(self):
        """
        Returns a list of the one-dimensional manifolds forming the boundary
        of the surface (including holes).
        """
        raise NotImplementedError()

    def hasHole(self):
        """
        Returns True if a hole is present.
        """
        raise NotImplementedError()

    def setElementDistribution(self,n,progression=1,createBump=False):
        """
        Defines the number of elements on the lines 

        :param n: number of elements on the line
        :type n: ``int``
        :param progression: a positive progression factor
        :type progression: positive ``float``
        :param createBump: of elements on the line
        :type createBump: ``bool``
        """
        for i in self.getBoundary(): i.setElementDistribution(n,progression,createBump)

    def getPoints(self):
        """
        returns a list of points used to define the boundary
        
        :return: list of points used to define the boundary
        :rtype: ``list`` of  `Point` s
        """
        out=[]
        boundary=self.getBoundary()
        for l in boundary:
            for p in l.getBoundary():
               if not p in out: out.append(p)
        return out

    def setRecombination(self, max_deviation=45*DEG):
        """
        Recombines triangular meshes on the surface into mixed triangular/quadrangular meshes.
        ``max_deviation`` specifies the maximum derivation of the largest angle in the quadrangle 
        from the right angle. Use ``max_deviation``==``None`` to switch off recombination.

        :param max_deviation: maximum derivation of the largest angle in the quadrangle from the right angle. 
        :type max_deviation: ``float`` or ``None``.
        """
        if isinstance(self, ReversePrimitive):
           self.getUnderlyingPrimitive().setRecombination(max_deviation)
        else:
            if not max_deviation==None:
                if max_deviation<=0:
                   raise ValueError("max_deviation must be positive.")
                if max_deviation/DEG>=90:
                   raise ValueError("max_deviation must be smaller than 90 DEG")
            self.__recombination_angle=max_deviation

    def getRecombination(self):
        """
        returns max deviation from right angle in the recombination algorithm 

        :return: max deviation from right angle in the recombination algorithm. If recombination is switched off, ``None`` is returned.
        :rtype: ``float`` or ``None``
        """
        if isinstance(self, ReversePrimitive):
           return self.getUnderlyingPrimitive().getRecombination()
        else:
           return self.__recombination_angle

    def setTransfiniteMeshing(self,orientation="Left"):
        """
        applies 2D transfinite meshing to the surface. 

        :param orientation: sets the orientation of the triangles. It is only relevant if recombination is not used.
        :type orientation: `Manifold2D.LEFT`, `Manifold2D.RIGHT`, `Manifold2D.ALTERNATE`
        :note: Transfinite meshing can not be applied if holes are present.
        """
        if isinstance(self, ReversePrimitive):
           return self.getUnderlyingPrimitive().setTransfiniteMeshing(orientation)
        else:
           if not orientation in [ Manifold2D.LEFT, Manifold2D.RIGHT, Manifold2D.ALTERNATE]:
              raise ValueError("invalid orientation %s."%orientation)
           if self.hasHole():
             raise ValueError("transfinite meshing cannot be appled to surfaces with a hole.")
           b=self.getBoundary()
           if len(b)>4 or len(b)<3:
             raise ValueError("transfinite meshing permits 3 or 4 boundary lines only.")
           for l in b: 
               if l.getElementDistribution() == None: raise  ValueError("transfinite meshing requires element distribution on all boundary lines.")
           start=b[0]
           opposite=None
           top=None
           bottom=None
           for l in b[1:]:
                if l.getEndPoint() == start.getStartPoint():
                    bottom=l
                elif l.getStartPoint() == start.getEndPoint(): 
                    top=l
                else:
                    opposite=l
           if top==None or bottom == None: 
                raise ValueError("transfinite meshing cannot be applied to boundary is not closed. Most likely the orientation of some boundray segments is wrong.")
           if opposite == None:  # three sides only
                if not top.getElementDistribution()[0] == bottom.getElementDistribution()[0]: start, top, bottom= bottom, start, top
           if not top.getElementDistribution() == bottom.getElementDistribution():
                raise ValueError("transfinite meshing requires opposite faces to be have the same element distribution.")
           if not opposite == None:
               if not start.getElementDistribution()[0] == opposite.getElementDistribution()[0]:
                   raise ValueError("transfinite meshing requires oposite faces to be have the same element distribution.")
           if opposite == None:
               if bottom.getEndPoint ==  top.getStartPoint():
                   raise ValueError("cannot identify corner proints for transfinite meshing.")
               else:
                   points=[ bottom.getStartPoint(), bottom.getEndPoint(), top.getStartPoint() ]
           else:
               points=[ bottom.getStartPoint(), bottom.getEndPoint(), top.getStartPoint(), top.getEndPoint() ]
           self.__points=points
           self.__orientation=orientation
           self.__transfinitemeshing=True

    def resetTransfiniteMeshing(self):
        """
        removes the transfinite meshing from the surface
        """
        if isinstance(self, ReversePrimitive):
           self.getUnderlyingPrimitive().resetTransfiniteMeshing()
        else:
           self.__transfinitemeshing=False

    def getTransfiniteMeshing(self):
        """
        returns the transfinite meshing settings. If transfinite meshing is not set, ``None`` is returned.
        
        :return: a tuple of the tuple of points used to define the transfinite meshing and the orientation. If no points are set the points tuple is returned as ``None``. If no transfinite meshing is not set, ``None`` is returned.
        :rtype: ``tuple`` of a ``tuple`` of `Point` s (or ``None``) and the orientation which is one of the values  `Manifold2D.LEFT` , `Manifold2D.RIGHT` , `Manifold2D.ALTERNATE`
        """
        if isinstance(self, ReversePrimitive):
           return self.getUnderlyingPrimitive().getTransfiniteMeshing()
        else:
            if self.__transfinitemeshing:
                return (self.__points, self.__orientation)
            else:
                return None
class RuledSurface(Primitive, Manifold2D):
    """
    A ruled surface, i.e. a surface that can be interpolated using transfinite
    interpolation.
    """
    def __init__(self,loop):
       """
       Creates a ruled surface with boundary ``loop``.

       :param loop: `CurveLoop` defining the boundary of the surface.
       """
       if not isinstance(loop.getUnderlyingPrimitive(),CurveLoop):
           raise TypeError("argument loop needs to be a CurveLoop object.")
       if len(loop)<2:
           raise ValueError("the loop must contain at least two Curves.")
       if len(loop)>4:
           raise ValueError("the loop must contain at most four Curves.")
       Primitive.__init__(self)
       Manifold2D.__init__(self)
       self.__loop=loop

    def hasHole(self):
        """
        Returns True if a hole is present.
        """
        return False

    def __neg__(self):
        """
        Returns a view onto the suface with reversed ordering.
        """
        return ReverseRuledSurface(self)

    def getBoundaryLoop(self):
        """
        Returns the loop defining the outer boundary.
        """
        return self.__loop

    def getBoundary(self):
        """
        Returns a list of the one-dimensional manifolds forming the boundary
        of the Surface (including holes).
        """
        return self.getBoundaryLoop().getCurves()

    def substitute(self,sub_dict):
        """
        Returns a copy of self with substitutes for the primitives used to
        construct it given by the dictionary ``sub_dict``. If a substitute for
        the object is given by ``sub_dict`` the value is returned, otherwise a
        new instance with substituted arguments is returned.
        """
        if self not in sub_dict:
            sub_dict[self]=RuledSurface(self.getBoundaryLoop().substitute(sub_dict))
        return sub_dict[self]

    def isColocated(self,primitive):
       """
       Returns True if each curve is collocated with a curve in ``primitive``.
       """
       if hasattr(primitive,"getUnderlyingPrimitive"):
          if isinstance(primitive.getUnderlyingPrimitive(),RuledSurface):
             return self.getBoundaryLoop().isColocated(primitive.getBoundaryLoop())
       return False

    def collectPrimitiveBases(self):
        """
        Returns primitives used to construct the Surface.
        """
        return [self] + self.getBoundaryLoop().collectPrimitiveBases()

def createRuledSurface(*curves):
      """
      An easier way to create a `RuledSurface` from given curves.
      """
      return RuledSurface(CurveLoop(*curves))


class ReverseRuledSurface(ReversePrimitive, Manifold2D):
    """
    Creates a view onto a `RuledSurface` but with reverse orientation.
    """
    def __init__(self,surface):
       """
       Creates a polygon from a list of line curves. The curves must form a
       closed loop.
       """
       if not isinstance(surface, RuledSurface):
           raise TypeError("arguments need to be an instance of CurveLoop.")
       ReversePrimitive.__init__(self, surface)
       Manifold2D.__init__(self)

    def getBoundaryLoop(self):
       """
       Returns the CurveLoop defining the ReverseRuledSurface.
       """
       return -self.getUnderlyingPrimitive().getBoundaryLoop()

    def getBoundary(self):
       """
       Returns a list of the one-dimensional manifolds forming the boundary
       of the Surface (including holes).
       """
       return self.getBoundaryLoop().getCurves()

    def hasHole(self):
        """
        Returns True if a hole is present.
        """
        return False

#==============================
class PlaneSurface(Primitive, Manifold2D):
    """
    A plane surface with holes.
    """
    def __init__(self,loop,holes=[]):
       """
       Creates a plane surface with holes.

       :param loop: `CurveLoop` defining the boundary of the surface
       :param holes: list of `CurveLoop` s defining holes in the surface
       :note: A CurveLoop defining a hole should not have any lines in common
              with the exterior CurveLoop.
       :note: A CurveLoop defining a hole should not have any lines in common
              with another CurveLoop defining a hole in the same surface.
       """
       if not isinstance(loop.getUnderlyingPrimitive(),CurveLoop):
           raise TypeError("argument loop needs to be a CurveLoop object.")
       for i in range(len(holes)):
            if not isinstance(holes[i].getUnderlyingPrimitive(), CurveLoop):
                 raise TypeError("%i-th hole needs to be a CurveLoop object.")
       #TODO: check if lines and holes are in a plane
       #TODO: are holes really holes?
       Primitive.__init__(self)
       Manifold2D.__init__(self)
       self.__loop=loop
       self.__holes=holes

    def hasHole(self):
        """
        Returns True if a hole is present.
        """
        return len(self.getHoles())>0

    def getHoles(self):
       """
       Returns the holes.
       """
       return self.__holes

    def getBoundaryLoop(self):
        """
        Returns the loop defining the boundary.
        """
        return self.__loop

    def substitute(self,sub_dict):
        """
        Returns a copy of self with substitutes for the primitives used to
        construct it given by the dictionary ``sub_dict``. If a substitute for
        the object is given by ``sub_dict`` the value is returned, otherwise a
        new instance with substituted arguments is returned.
        """
        if self not in sub_dict:
            sub_dict[self]=PlaneSurface(self.getBoundaryLoop().substitute(sub_dict),[ h.substitute(sub_dict) for h in self.getHoles()])
        return sub_dict[self]

    def isColocated(self,primitive):
       """
       Returns True if each curve is collocated with a curve in ``primitive``.
       """
       if hasattr(primitive,"getUnderlyingPrimitive"):
          if isinstance(primitive.getUnderlyingPrimitive(),PlaneSurface):
             if self.getBoundaryLoop().isColocated(primitive.getBoundaryLoop()):
                hs0=self.getHoles()
                hs1=primitive.getHoles()
                if len(hs0) == len(hs1):
                    for h0 in hs0:
                       colocated = False
                       for h1 in hs1:
                         colocated = colocated or h0.isColocated(h1)
                       if not colocated: return False
                    return True
       return False

    def collectPrimitiveBases(self):
        """
        Returns primitives used to construct the Surface.
        """
        out=[self] + self.getBoundaryLoop().collectPrimitiveBases()
        for i in self.getHoles(): out+=i.collectPrimitiveBases()
        return out

    def __neg__(self):
        """
        Returns a view onto the curve with reversed ordering.
        """
        return ReversePlaneSurface(self)

    def getBoundary(self):
        """
        Returns a list of the one-dimensional manifolds forming the boundary
        of the Surface (including holes).
        """
        out = []+ self.getBoundaryLoop().getCurves()
        for h in self.getHoles(): out+=h.getCurves()
        return out

class ReversePlaneSurface(ReversePrimitive, Manifold2D):
    """
    Creates a view onto a `PlaneSurface` but with reverse orientation.
    """
    def __init__(self,surface):
       """
       Creates a polygon from a `PlaneSurface`.
       """
       if not isinstance(surface, PlaneSurface):
           raise TypeError("arguments need to be an instance of PlaneSurface.")
       ReversePrimitive.__init__(self, surface)
       Manifold2D.__init__(self)

    def getBoundaryLoop(self):
       """
       Returns the CurveLoop defining the ReversePlaneSurface.
       """
       return -self.getUnderlyingPrimitive().getBoundaryLoop()

    def getHoles(self):
        """
        Returns the holes.
        """
        return [ -h for h in self.getUnderlyingPrimitive().getHoles() ]

    def getBoundary(self):
        """
        Returns a list of the one-dimensional manifolds forming the boundary
        of the Surface (including holes).
        """
        out = [] + self.getBoundaryLoop().getCurves()
        for h in self.getHoles(): out+=h.getCurves()
        return out

    def hasHole(self):
        """
        Returns True if a hole is present.
        """
        return len(self.getHoles())>0

#=========================================================================
class SurfaceLoop(Primitive, PrimitiveBase):
    """
    A loop of 2D primitives which defines the shell of a volume.

    The loop must represent a closed shell, and the primitives should be
    oriented consistently.
    """
    def __init__(self,*surfaces):
       """
       Creates a surface loop.
       """
       if len(surfaces)==1: 
           surfaces=surfaces[0]
           if not hasattr(surfaces,'__iter__'): raise ValueError("SurfaceLoop needs at least two points")
       if len(surfaces)<2:
            raise ValueError("at least two surfaces have to be given.")
       for i in range(len(surfaces)):
           if not isinstance(surfaces[i].getUnderlyingPrimitive(),Manifold2D):
              raise TypeError("%s-th argument is not a Manifold2D object."%i)
       self.__surfaces=list(surfaces)
       Primitive.__init__(self)
       PrimitiveBase.__init__(self)

    def __len__(self):
       """
       Returns the number of curves in the SurfaceLoop.
       """
       return len(self.__surfaces)

    def __neg__(self):
       """
       Returns a view onto the curve with reversed ordering.
       """
       return ReverseSurfaceLoop(self)

    def getSurfaces(self):
       """
       Returns the surfaces defining the SurfaceLoop.
       """
       return self.__surfaces

    def collectPrimitiveBases(self):
       """
       Returns primitives used to construct the SurfaceLoop.
       """
       out=[self]
       for c in self.getSurfaces(): out+=c.collectPrimitiveBases()
       return out

    def substitute(self,sub_dict):
        """
        Returns a copy of self with substitutes for the primitives used to
        construct it given by the dictionary ``sub_dict``. If a substitute for
        the object is given by ``sub_dict`` the value is returned, otherwise a
        new instance with substituted arguments is returned.
        """
        if self not in sub_dict:
            new_s=[]
            for s in self.getSurfaces(): new_s.append(s.substitute(sub_dict))
            sub_dict[self]=SurfaceLoop(*tuple(new_s))
        return sub_dict[self]

    def isColocated(self,primitive):
       """
       Returns True if each surface is collocated with a curve in ``primitive``
       and vice versa.
       """
       if hasattr(primitive,"getUnderlyingPrimitive"):
         if isinstance(primitive.getUnderlyingPrimitive(),SurfaceLoop):
            if len(primitive) == len(self):
                sp0=self.getSurfaces()
                sp1=primitive.getSurfaces()
                for s0 in sp0:
                    colocated = False
                    for s1 in sp1:
                         colocated = colocated or s0.isColocated(s1)
                    if not colocated: return False
                return True
       return False

class ReverseSurfaceLoop(ReversePrimitive, PrimitiveBase):
    """
    A view of a SurfaceLoop with reverse orientation.

    The loop must represent a closed shell and the primitives should be
    oriented consistently.
    """
    def __init__(self,surface_loop):
       """
       Creates a polygon from a list of line surfaces. The curves must form
       a closed loop.
       """
       if not isinstance(surface_loop, SurfaceLoop):
           raise TypeError("arguments need to be an instance of SurfaceLoop.")
       ReversePrimitive.__init__(self, surface_loop)
       PrimitiveBase.__init__(self)

    def getSurfaces(self):
       """
       Returns the surfaces defining the SurfaceLoop.
       """
       return [ -s for s in  self.getUnderlyingPrimitive().getSurfaces() ]

    def __len__(self):
        return len(self.getUnderlyingPrimitive())

#==============================
class Manifold3D(PrimitiveBase):
    """
    General three-dimensional manifold.
    """
    def __init__(self):
       """
       Creates a three-dimensional manifold.
       """
       PrimitiveBase.__init__(self)
       self.__transfinitemeshing=False

    def getBoundary(self):
        """
        Returns a list of the 2-dimensional manifolds forming the boundary
        of the volume (including holes).
        """
        raise NotImplementedError()

    def setElementDistribution(self,n,progression=1,createBump=False):
        """
        Defines the number of elements on the lines and surfaces

        :param n: number of elements on the line
        :type n: ``int``
        :param progression: a positive progression factor
        :type progression: positive ``float``
        :param createBump: of elements on the line
        :type createBump: ``bool``
        """
        for i in self.getBoundary(): i.setElementDistribution(n,progression,createBump)

    def setRecombination(self, max_deviation=45*DEG):
        """
        Recombines triangular meshes on all surface into mixed triangular/quadrangular meshes. These meshes
        are then used to generate the volume mesh if possible. Recombination requires 3D transfinite meshing.

        ``max_deviation`` specifies the maximum derivation of the largest angle in the quadrangle 
        from the right angle. Use ``max_deviation``==``None`` to switch off recombination.

        :param max_deviation: maximum derivation of the largest angle in the quadrangle from the right angle. 
        :type max_deviation: ``float`` or ``None``.
        """
        if not max_deviation==None:
           if max_deviation<=0:
                raise ValueError("max_deviation must be positive.")
           if max_deviation/DEG>=90:
                raise ValueError("max_deviation must be smaller than 90 DEG")
        for i in self.getBoundary(): i.setRecombination(max_deviation)
        self.setTransfiniteMeshing()

    def setTransfiniteMeshing(self,orientation="Left"):
        """
        applies 3D transfinite meshing to the volume and all surface. It requires transfinite meshing
        on all faces which will be enforced (except if ``orientation`` is equal to ``None``).
        :param orientation: sets the orientation of the triangles on the surfaces. It is only relevant if recombination is not used.
        If orientation is equal to ``None``, the transfinite meshing is not applied to the surfaces but must be set by the user.
        :type orientation: `Manifold2D.LEFT`, `Manifold2D.RIGHT`, `Manifold2D.ALTERNATE`
        :note: Transfinite meshing can not be applied if holes are present.
        :note: only five or six surfaces may be used.
        :warning: The functionality of transfinite meshing without recombination is not entirely clear in `gmsh`. So please apply this method with care.
        """
        if isinstance(self, ReversePrimitive):
           return self.getUnderlyingPrimitive().setTransfiniteMeshing(orientation)
        else:
           if not orientation == None:
              if not orientation in [ Manifold2D.LEFT, Manifold2D.RIGHT, Manifold2D.ALTERNATE]:
                 raise ValueError("invalid orientation %s."%orientation)
       
           if self.hasHole():
             raise ValueError("transfinite meshing cannot be appled to surfaces with a hole.")
           b=self.getBoundary()
           # find a face with 3/4 Points:
           if len(b) == 6 :
                des_len=4
           elif len(b) == 5:
                des_len=3   
           else:
                raise ValueError("transfinite meshing permits 5 or 6 surface only.")  
           # start_b=None
           # for l in b:
           #     if len(l.getPolygon()) == des_len:
           #          start_b = l
           #          break
           # if start_b == None:
           #     raise ValueError,"Expect face with %s points."%des_len
           # start_poly=start_b.getPolygon()
           # now we need to find the opposite face:
           # opposite = None   
           # for l in b: 
           #    if all( [ not k in start_poly for k in l.getPolygon() ]): 
           #       opposite = l
           #       break
           # if opposite == None:
           #     raise ValueError,"Unable to find face for transfinite interpolation."
           # opposite_poly=opposite.getPolygon()
           # if not len(opposite_poly) == des_len:
           #     raise ValueError,"Unable to find face for transfinite interpolation."
           # this needs more work to find the points!!!!
           points = []
           self.__points=points
           if not orientation == None: 
                 for i in b: i.setTransfiniteMeshing(orientation)
           self.__transfinitemeshing=True

    def resetTransfiniteMeshing(self):
        """
        removes the transfinite meshing from the volume but not from the surfaces
        """
        if isinstance(self, ReversePrimitive):
           self.getUnderlyingPrimitive().resetTransfiniteMeshing()
        else:
           self.__transfinitemeshing=False

    def getTransfiniteMeshing(self):
        """
        returns the transfinite meshing settings. If transfinite meshing is not set, ``None`` is returned.
        
        :return: a tuple of the tuple of points used to define the transfinite meshing and the orientation. If no points are set the points tuple is returned as ``None``. If no transfinite meshing is not set, ``None`` is returned.
        :rtype: ``tuple`` of a ``tuple`` of `Point` s (or ``None``) and the orientation which is one of the values  `Manifold2D.LEFT` , `Manifold2D.RIGHT` , `Manifold2D.ALTERNATE`
        """
        if isinstance(self, ReversePrimitive):
           return self.getUnderlyingPrimitive().getTransfiniteMeshing()
        else:
            if self.__transfinitemeshing:
                return self.__points
            else:
                return None

class Volume(Manifold3D, Primitive):
    """
    A volume with holes.
    """
    def __init__(self,loop,holes=[]):
       """
       Creates a volume with holes.

       :param loop: `SurfaceLoop` defining the boundary of the surface
       :param holes: list of `SurfaceLoop` defining holes in the surface
       :note: A SurfaceLoop defining a hole should not have any surfaces in
              common with the exterior SurfaceLoop.
       :note: A SurfaceLoop defining a hole should not have any surfaces in
              common with another SurfaceLoop defining a hole in the same
              volume.
       """
       if not isinstance(loop.getUnderlyingPrimitive(), SurfaceLoop):
           raise TypeError("argument loop needs to be a SurfaceLoop object.")
       for i in range(len(holes)):
            if not isinstance(holes[i].getUnderlyingPrimitive(), SurfaceLoop):
                 raise TypeError("%i th hole needs to be a SurfaceLoop object.")
       Primitive.__init__(self)
       Manifold3D.__init__(self)
       self.__loop=loop
       self.__holes=holes
       self.__transfinitemeshing=False

    def getHoles(self):
       """
       Returns the holes in the volume.
       """
       return self.__holes

    def getSurfaceLoop(self):
       """
       Returns the loop forming the surface.
       """
       return self.__loop

    def substitute(self,sub_dict):
        """
        Returns a copy of self with substitutes for the primitives used to
        construct it given by the dictionary ``sub_dict``. If a substitute for
        the object is given by ``sub_dict`` the value is returned, otherwise a
        new instance with substituted arguments is returned.
        """
        if self not in sub_dict:
            sub_dict[self]=Volume(self.getSurfaceLoop().substitute(sub_dict),[ h.substitute(sub_dict) for h in self.getHoles()])
        return sub_dict[self]

    def isColocated(self,primitive):
       """
       Returns True if each curve is collocated with a curve in ``primitive``.
       """
       if hasattr(primitive,"getUnderlyingPrimitive"):
          if isinstance(primitive.getUnderlyingPrimitive(),Volume):
             if self.getSurfaceLoop().isColocated(primitive.getSurfaceLoop()):
                hs0=self.getHoles()
                hs1=primitive.getHoles()
                if len(hs0) == len(hs1):
                    for h0 in hs0:
                       colocated = False
                       for h1 in hs1:
                         colocated = colocated or h0.isColocated(h1)
                       if not colocated: return False
                    return True
       return False

    def collectPrimitiveBases(self):
        """
        Returns primitives used to construct the surface.
        """
        out=[self] + self.getSurfaceLoop().collectPrimitiveBases()
        for i in self.getHoles(): out+=i.collectPrimitiveBases()
        return out

    def getBoundary(self):
        """
        Returns a list of the 2-dimensional manifolds forming the surface of the Volume (including holes).
        """
        out = []+ self.getSurfaceLoop().getSurfaces()
        for h in self.getHoles(): out+=h.getSurfaces()
        return out

    def hasHole(self):
        """
        Returns True if a hole is present.
        """
        return len(self.getHoles())>0
class PropertySet(Primitive, PrimitiveBase):
    """
    Defines a group of `Primitive` s which can be accessed through a name.
    """
    def __init__(self,name,*items):
       Primitive.__init__(self)
       self.__dim=None
       self.clearItems()
       self.addItem(*items)
       self.setName(name)

    def getDim(self):
       """
       Returns the dimensionality of the items.
       """
       if self.__dim == None:
           items=self.getItems()
           if len(items)>0:
                if isinstance(items[0] ,Manifold1D):
                     self.__dim=1
                elif isinstance(items[0] ,Manifold2D):
                     self.__dim=2
                elif isinstance(items[0] ,Manifold3D):
                    self.__dim=3
                else:
                    self.__dim=0
       return self.__dim

    def __repr__(self):
       """
       Returns a string representation.
       """
       return "%s(%s)"%(self.getName(),self.getID())

    def getManifoldClass(self):
        """
        Returns the manifold class expected from items.
        """
        d=self.getDim()
        if d == None:
           raise ValueError("undefined spatial diemnsion.")
        else:
           if d==0:
              return Point
           elif d==1:
              return Manifold1D
           elif d==2:
              return Manifold2D
           else:
              return Manifold3D

    def getName(self):
        """
        Returns the name of the set.
        """
        return self.__name

    def setName(self,name):
        """
        Sets the name.
        """
        self.__name=str(name)

    def addItems(self,*items):
        """
        Adds items. An item my be any `Primitive` but no `PropertySet`.
        """
        self.addItem(*items)

    def addItem(self,*items):
        """
        Adds items. An item my be any `Primitive` but no `PropertySet`.
        """
        for i in items:
            if not (isinstance(i, Manifold1D) or isinstance(i, Manifold2D) or isinstance(i, Manifold3D) ):
                  raise TypeError("Illegal argument type %s added to PropertySet."%(i.__class__))
        for i in items:
            if not i in self.__items:
               if len(self.__items)>0:
                  m=self.getManifoldClass()
                  if not isinstance(i, m):
                     raise TypeError("argument %s is not a %s class object."%(i, m.__name__))
               self.__items.append(i)

    def getNumItems(self):
        """
        Returns the number of items in the property set.
        """
        return len(self.__items)

    def getItems(self):
        """
        Returns the list of items.
        """
        return self.__items

    def clearItems(self):
        """
        Clears the list of items.
        """
        self.__items=[]

    def collectPrimitiveBases(self):
        """
        Returns primitives used to construct the PropertySet.
        """
        out=[self]
        for i in self.getItems(): out+=i.collectPrimitiveBases()
        return out

    def getTag(self):
        """
        Returns the tag used for this property set.
        """
        return self.getID()