1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
|
/*****************************************************************************
*
* Copyright (c) 2003-2020 by The University of Queensland
* http://www.uq.edu.au
*
* Primary Business: Queensland, Australia
* Licensed under the Apache License, version 2.0
* http://www.apache.org/licenses/LICENSE-2.0
*
* Development until 2012 by Earth Systems Science Computational Center (ESSCC)
* Development 2012-2013 by School of Earth Sciences
* Development from 2014-2017 by Centre for Geoscience Computing (GeoComp)
* Development from 2019 by School of Earth and Environmental Sciences
**
*****************************************************************************/
#include "SystemMatrixTestCase.h"
#include <ripley/Rectangle.h>
#include <ripley/RipleySystemMatrix.h>
#include <escript/FunctionSpaceFactory.h>
#include <cppunit/TestCaller.h>
using namespace CppUnit;
using namespace std;
// number of matrix rows (for blocksize 1)
const int rows = 20;
// diagonal offsets for full matrix
const int diag_off[] = { -6, -5, -4, -1, 0, 1, 4, 5, 6 };
// to get these reference values save the matrix via saveMM(), then in python:
// print scipy.io.mmread('mat.mtx') * range(20*blocksize)
// reference results - non-symmetric
// block size 1
const double ref_bs1[] =
{ 5800., 6400., 28200., 29200., 72100., 73950.,
145600., 148200., 251200., 254600., 388800., 393000.,
558400., 563400., 608000., 612800., 360600., 363400.,
475800., 479000.};
// block size 2
const double ref_bs2[] =
{ 24455., 24507., 27053., 27105., 118083., 118167.,
122281., 122365., 299244., 299399., 306990., 307145.,
601398., 601614., 612194., 612410., 1031854., 1032134.,
1045850., 1046130., 1590310., 1590654., 1607506., 1607850.,
2276766., 2277174., 2297162., 2297570., 2475540., 2475931.,
2495086., 2495477., 1468199., 1468427., 1479597., 1479825.,
1933027., 1933287., 1946025., 1946285.};
// block size 3
const double ref_bs3[] =
{ 56174., 56294., 56414., 62156., 62276., 62396.,
269954., 270146., 270338., 279536., 279728., 279920.,
681940., 682294., 682648., 699604., 699958., 700312.,
1368088., 1368580., 1369072., 1392652., 1393144., 1393636.,
2342848., 2343484., 2344120., 2374612., 2375248., 2375884.,
3605608., 3606388., 3607168., 3644572., 3645352., 3646132.,
5156368., 5157292., 5158216., 5202532., 5203456., 5204380.,
5603773., 5604658., 5605543., 5647987., 5648872., 5649757.,
3323474., 3323990., 3324506., 3349256., 3349772., 3350288.,
4372454., 4373042., 4373630., 4401836., 4402424., 4403012.};
// block size 4
const double ref_bs4[] =
{ 101334., 101550., 101766., 101982., 112062.,
112278., 112494., 112710., 484358., 484702.,
485046., 485390., 501486., 501830., 502174.,
502518., 1221084., 1221718., 1222352., 1222986.,
1252640., 1253274., 1253908., 1254542., 2446892.,
2447772., 2448652., 2449532., 2490748., 2491628.,
2492508., 2493388., 4185740., 4186876., 4188012.,
4189148., 4242396., 4243532., 4244668., 4245804.,
6436588., 6437980., 6439372., 6440764., 6506044.,
6507436., 6508828., 6510220., 9199436., 9201084.,
9202732., 9204380., 9281692., 9283340., 9284988.,
9286636., 9994708., 9996286., 9997864., 9999442.,
10073464., 10075042., 10076620., 10078198., 5927606.,
5928526., 5929446., 5930366., 5973534., 5974454.,
5975374., 5976294., 7795430., 7796478., 7797526.,
7798574., 7847758., 7848806., 7849854., 7850902.};
const double* ref[] = {ref_bs1, ref_bs2, ref_bs3, ref_bs4};
// reference results - symmetric
// block size 1
const double ref_symm_bs1[] =
{ 5800., 6400., 28200., 29500., 72100., 75600.,
142550., 153300., 243850., 263000., 377150., 404700.,
542450., 578400., 587750., 631100., 336050., 382600.,
446950., 501200.};
// block size 2
const double ref_symm_bs2[] =
{ 24455., 24507., 27202., 27255., 118083., 118167.,
123626., 123719., 298942., 299096., 314374., 314574.,
588036., 588250., 633214., 633510., 1001284., 1001578.,
1080054., 1080446., 1542532., 1542906., 1654894., 1655382.,
2211780., 2212234., 2357734., 2358318., 2393346., 2393799.,
2568842., 2569441., 1368797., 1369103., 1556820., 1557223.,
1816417., 1816771., 2035236., 2035695.};
// block size 3
const double ref_symm_bs3[] =
{ 56174., 56294., 56414., 62596., 62722., 62848.,
269954., 270146., 270338., 282640., 282874., 283108.,
681025., 681376., 681727., 716694., 717246., 717798.,
1337096., 1337600., 1338104., 1440210., 1441050., 1441890.,
2273084., 2273804., 2274524., 2451726., 2452854., 2453982.,
3497072., 3498008., 3498944., 3751242., 3752658., 3754074.,
5009060., 5010212., 5011364., 5338758., 5340462., 5342166.,
5417693., 5418878., 5420063., 5813769., 5815578., 5817387.,
3098622., 3099510., 3100398., 3522842., 3524132., 3525422.,
4108830., 4109862., 4110894., 4602314., 4603784., 4605254.};
// block size 4
const double ref_symm_bs4[] =
{ 101334., 101550., 101766., 101982., 112920.,
113154., 113388., 113622., 484358., 484702.,
485046., 485390., 507000., 507458., 507916.,
508374., 1219228., 1219856., 1220484., 1221112.,
1283176., 1284336., 1285496., 1286656., 2390844.,
2391776., 2392708., 2393640., 2575048., 2576848.,
2578648., 2580448., 4060604., 4061984., 4063364.,
4064744., 4378920., 4381360., 4383800., 4386240.,
6242364., 6244192., 6246020., 6247848., 6694792.,
6697872., 6700952., 6704032., 8936124., 8938400.,
8940676., 8942952., 9522664., 9526384., 9530104.,
9533824., 9662308., 9664706., 9667104., 9669502.,
10366660., 10370694., 10374728., 10378762., 5526118.,
5528050., 5529982., 5531914., 6280848., 6283822.,
6286796., 6289770., 7324854., 7327106., 7329358.,
7331610., 8202640., 8206030., 8209420., 8212810.};
const double* ref_symm[] = {ref_symm_bs1, ref_symm_bs2, ref_symm_bs3, ref_symm_bs4};
/// helper
double lsup(const double* d0, const double* d1, int length)
{
double result = 0.;
for (int i=0; i<length; i++) {
result = std::max(result, std::abs(d0[i] - d1[i]));
//std::cerr << d0[i] << " " << d1[i] << std::endl;
}
return result;
}
TestSuite* SystemMatrixTestCase::suite()
{
TestSuite *testSuite = new TestSuite("SystemMatrixTestCase");
testSuite->addTest(new TestCaller<SystemMatrixTestCase>(
"testSpMV_CPU_blocksize1_nonsymmetric",
&SystemMatrixTestCase::testSpMV_CPU_blocksize1_nonsymmetric));
testSuite->addTest(new TestCaller<SystemMatrixTestCase>(
"testSpMV_CPU_blocksize2_nonsymmetric",
&SystemMatrixTestCase::testSpMV_CPU_blocksize2_nonsymmetric));
testSuite->addTest(new TestCaller<SystemMatrixTestCase>(
"testSpMV_CPU_blocksize3_nonsymmetric",
&SystemMatrixTestCase::testSpMV_CPU_blocksize3_nonsymmetric));
testSuite->addTest(new TestCaller<SystemMatrixTestCase>(
"testSpMV_CPU_blocksize4_nonsymmetric",
&SystemMatrixTestCase::testSpMV_CPU_blocksize4_nonsymmetric));
testSuite->addTest(new TestCaller<SystemMatrixTestCase>(
"testSpMV_CPU_blocksize1_symmetric",
&SystemMatrixTestCase::testSpMV_CPU_blocksize1_symmetric));
testSuite->addTest(new TestCaller<SystemMatrixTestCase>(
"testSpMV_CPU_blocksize2_symmetric",
&SystemMatrixTestCase::testSpMV_CPU_blocksize2_symmetric));
testSuite->addTest(new TestCaller<SystemMatrixTestCase>(
"testSpMV_CPU_blocksize3_symmetric",
&SystemMatrixTestCase::testSpMV_CPU_blocksize3_symmetric));
testSuite->addTest(new TestCaller<SystemMatrixTestCase>(
"testSpMV_CPU_blocksize4_symmetric",
&SystemMatrixTestCase::testSpMV_CPU_blocksize4_symmetric));
return testSuite;
}
void SystemMatrixTestCase::setUp()
{
mpiInfo = escript::makeInfo(MPI_COMM_WORLD);
domain.reset(new ripley::Rectangle(4, 3, 0., 0., 1., 1.));
}
escript::ASM_ptr SystemMatrixTestCase::createMatrix(int blocksize,
bool symmetric)
{
escript::FunctionSpace fs(escript::solution(*domain));
const int firstdiag = (symmetric ? 4 : 0);
const ripley::IndexVector offsets(diag_off+firstdiag, diag_off+9);
// create a matrix with 9 diagonals, given blocksize and symmetric flag
escript::ASM_ptr matptr(new ripley::SystemMatrix(mpiInfo, blocksize, fs,
rows, offsets, symmetric));
ripley::SystemMatrix* mat(dynamic_cast<ripley::SystemMatrix*>(matptr.get()));
ripley::IndexVector rowIdx(4);
std::vector<double> array(4*4*blocksize*blocksize);
for (int i=0; i<8; i++) {
rowIdx[0] = 2*i;
rowIdx[1] = 2*i+1;
rowIdx[2] = 2*i+4;
rowIdx[3] = 2*i+5;
for (int j=0; j<4*4; j++) {
for (int k=0; k<blocksize; k++) {
for (int l=0; l<blocksize; l++) {
// make main diagonal blocks symmetric since the current
// implementation actually reads full main diagonal blocks
// so if symmetric flag is set the matrix really has to be
// symmetric!
array[j*blocksize*blocksize + k*blocksize + l] =
(j%5==0 ? 1000*i+50*j+k+l : 1000*i+50*j+blocksize*k+l);
}
}
}
mat->add(rowIdx, array);
}
//mat->saveMM("/tmp/test.mtx");
return matptr;
}
escript::Data SystemMatrixTestCase::createInputVector(int blocksize)
{
escript::FunctionSpace fs(escript::solution(*domain));
escript::DataTypes::ShapeType shape;
if (blocksize > 1)
shape.push_back(blocksize);
escript::Data x(0., shape, fs, true);
for (int i=0; i<rows; i++) {
double* xx= x.getSampleDataRW(i);
for (int j=0; j<blocksize; j++)
xx[j] = (double)i*blocksize + j;
}
return x;
}
void SystemMatrixTestCase::testSpMV_CPU_blocksize1_nonsymmetric()
{
int blocksize = 1;
bool symmetric = false;
escript::ASM_ptr mat(createMatrix(blocksize, symmetric));
const escript::Data x(createInputVector(blocksize));
const escript::Data y(mat->vectorMultiply(x));
const double* yref = ref[blocksize-1];
const double* yy = y.getSampleDataRO(0);
double error = lsup(yref, yy, blocksize*rows);
CPPUNIT_ASSERT(error < 1e-12);
}
void SystemMatrixTestCase::testSpMV_CPU_blocksize2_nonsymmetric()
{
int blocksize = 2;
bool symmetric = false;
escript::ASM_ptr mat(createMatrix(blocksize, symmetric));
const escript::Data x(createInputVector(blocksize));
const escript::Data y(mat->vectorMultiply(x));
const double* yref = ref[blocksize-1];
const double* yy = y.getSampleDataRO(0);
double error = lsup(yref, yy, blocksize*rows);
CPPUNIT_ASSERT(error < 1e-12);
}
void SystemMatrixTestCase::testSpMV_CPU_blocksize3_nonsymmetric()
{
int blocksize = 3;
bool symmetric = false;
escript::ASM_ptr mat(createMatrix(blocksize, symmetric));
const escript::Data x(createInputVector(blocksize));
const escript::Data y(mat->vectorMultiply(x));
const double* yref = ref[blocksize-1];
const double* yy = y.getSampleDataRO(0);
double error = lsup(yref, yy, blocksize*rows);
CPPUNIT_ASSERT(error < 1e-12);
}
void SystemMatrixTestCase::testSpMV_CPU_blocksize4_nonsymmetric()
{
int blocksize = 4;
bool symmetric = false;
escript::ASM_ptr mat(createMatrix(blocksize, symmetric));
const escript::Data x(createInputVector(blocksize));
const escript::Data y(mat->vectorMultiply(x));
const double* yref = ref[blocksize-1];
const double* yy = y.getSampleDataRO(0);
double error = lsup(yref, yy, blocksize*rows);
CPPUNIT_ASSERT(error < 1e-12);
}
void SystemMatrixTestCase::testSpMV_CPU_blocksize1_symmetric()
{
int blocksize = 1;
bool symmetric = true;
escript::ASM_ptr mat(createMatrix(blocksize, symmetric));
const escript::Data x(createInputVector(blocksize));
const escript::Data y(mat->vectorMultiply(x));
const double* yref = ref_symm[blocksize-1];
const double* yy = y.getSampleDataRO(0);
double error = lsup(yref, yy, blocksize*rows);
CPPUNIT_ASSERT(error < 1e-12);
}
void SystemMatrixTestCase::testSpMV_CPU_blocksize2_symmetric()
{
int blocksize = 2;
bool symmetric = true;
escript::ASM_ptr mat(createMatrix(blocksize, symmetric));
const escript::Data x(createInputVector(blocksize));
const escript::Data y(mat->vectorMultiply(x));
const double* yref = ref_symm[blocksize-1];
const double* yy = y.getSampleDataRO(0);
double error = lsup(yref, yy, blocksize*rows);
CPPUNIT_ASSERT(error < 1e-12);
}
void SystemMatrixTestCase::testSpMV_CPU_blocksize3_symmetric()
{
int blocksize = 3;
bool symmetric = true;
escript::ASM_ptr mat(createMatrix(blocksize, symmetric));
const escript::Data x(createInputVector(blocksize));
const escript::Data y(mat->vectorMultiply(x));
const double* yref = ref_symm[blocksize-1];
const double* yy = y.getSampleDataRO(0);
double error = lsup(yref, yy, blocksize*rows);
CPPUNIT_ASSERT(error < 1e-12);
}
void SystemMatrixTestCase::testSpMV_CPU_blocksize4_symmetric()
{
int blocksize = 4;
bool symmetric = true;
escript::ASM_ptr mat(createMatrix(blocksize, symmetric));
const escript::Data x(createInputVector(blocksize));
const escript::Data y(mat->vectorMultiply(x));
const double* yref = ref_symm[blocksize-1];
const double* yy = y.getSampleDataRO(0);
double error = lsup(yref, yy, blocksize*rows);
CPPUNIT_ASSERT(error < 1e-12);
}
|