File: run_escriptOnMultiResolution.py

package info (click to toggle)
python-escript 5.6-10
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,304 kB
  • sloc: python: 592,074; cpp: 136,909; ansic: 18,675; javascript: 9,411; xml: 3,384; sh: 738; makefile: 207
file content (397 lines) | stat: -rw-r--r-- 19,887 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397

##############################################################################
#
# Copyright (c) 2003-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################

from __future__ import print_function, division

__copyright__="""Copyright (c) 2003-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"

import os
import sys
import esys.escriptcore.utestselect as unittest
from esys.escriptcore.testing import *
from esys.escript import *
from esys.ripley import MultiRectangle, MultiBrick, ripleycpp, MultiResolutionDomain
from test_objects import Test_Dump, Test_SetDataPointValue, Test_saveCSV, Test_TableInterpolation
from test_objects import Test_Domain, Test_Lazy

from test_shared import Test_Shared

from run_escriptOnRipley import Test_SharedOnRipley, Test_DomainOnRipley, \
                        Test_TableInterpolationOnRipley, Test_DataOpsOnRipley, \
                        Test_CSVOnRipley

def Rectangle(**kwargs):
    m = MultiResolutionDomain(2, **kwargs)
    return m.getLevel(1)

def Brick(**kwargs):
    m = MultiResolutionDomain(3, **kwargs)
    return m.getLevel(1)


try:
     RIPLEY_WORKDIR=os.environ['RIPLEY_WORKDIR']
except KeyError:
     RIPLEY_WORKDIR='.'

NE=4 # number elements, must be even
mpiSize=getMPISizeWorld()
for x in [int(sqrt(mpiSize)),2,3,5,7,1]:
    NX=x
    NY=mpiSize//x
    if NX*NY == mpiSize:
        break

for x in [(int(mpiSize**(1/3.)),int(mpiSize**(1/3.))),(2,3),(2,2),(1,2),(1,1)]:
    NXb=x[0]
    NYb=x[1]
    NZb=mpiSize//(x[0]*x[1])
    if NXb*NYb*NZb == mpiSize:
        break

class Test_SharedOnMultiRipley(Test_SharedOnRipley):
    def setUp(self):
        self.domain=Rectangle(n0=NE*NX-1, n1=NE*NY-1, l0=1., l1=1., d0=NX, d1=NY)
        self.tol=0.001

    def tearDown(self):
        del self.domain
        del self.tol

class Test_DomainOnMultiRipley(Test_DomainOnRipley):
    def setUp(self):
        self.boundary_tag_list = [1, 2, 10, 20]
        self.domain=Rectangle(n0=NE*NX-1, n1=NE*NY-1, l0=1., l1=1., d0=NX, d1=NY)
        self.rdomain=Rectangle(n0=(NE+6)*NX-1, n1=(NE+6)*NY-1, l0=1., l1=1., d0=NX, d1=NY)

    def tearDown(self):
        del self.domain
        del self.boundary_tag_list

class Test_DataOpsOnMultiRipley(Test_DataOpsOnRipley):
    def setUp(self):
        self.domain=Rectangle(n0=NE*NX-1, n1=NE*NY-1, l0=1., l1=1., d0=NX, d1=NY)
        self.domain_with_different_number_of_samples=Rectangle(n0=7*NE*NX-1, n1=3*NE*NY-1, l0=1., l1=1., d0=NX, d1=NY)
        self.domain_with_different_number_of_data_points_per_sample=Rectangle(n0=7*NE*NX-1, n1=3*NE*NY-1, l0=1., l1=1., d0=NX, d1=NY)
        self.domain_with_different_sample_ordering=Rectangle(n0=NE*NX-1, n1=NE*NY-1, l0=1., l1=1., d0=NX, d1=NY)
        self.filename_base=RIPLEY_WORKDIR
        self.mainfs=Function(self.domain)
        self.otherfs=Solution(self.domain)

    def tearDown(self):
        del self.domain
        del self.domain_with_different_number_of_samples
        del self.domain_with_different_number_of_data_points_per_sample
        del self.domain_with_different_sample_ordering
        del self.mainfs
        del self.otherfs

@unittest.skipIf(mpiSize > 1, "Multiresolution domains require single process")
class Test_TableInterpolationOnMultiRipley(Test_TableInterpolationOnRipley):
    def setUp(self):
        self.domain = Brick(n0=NE*NXb-1, n1=NE*NYb-1, n2=NE*NZb-1, l0=1., l1=1., l2=1., d0=NXb, d1=NYb, d2=NZb)
        self.functionspaces=[ContinuousFunction(self.domain), Function(self.domain), ReducedFunction(self.domain),
            FunctionOnBoundary(self.domain), ReducedFunctionOnBoundary(self.domain)]
        #We aren't testing DiracDeltaFunctions
        self.xn=5 # number of grids on x axis
        self.yn=5 # number of grids on y axis
        self.zn=5

    def tearDown(self):
        del self.domain
        del self.functionspaces

class Test_CSVOnMultiRipley(Test_CSVOnRipley):
    def setUp(self):
        self.workdir=RIPLEY_WORKDIR
        self.domain=Rectangle(n0=NE*NX-1, n1=NE*NY-1, l0=1., l1=1., d0=NX, d1=NY)
        self.functionspaces=[ContinuousFunction, Function, ReducedFunction,
                             FunctionOnBoundary, ReducedFunctionOnBoundary]

        NE0 = (NE*NX-1)*2
        NE1 = (NE*NY-1)*2

        # number of total data points for each function space
        self.linecounts=[ (NE0+1)*(NE1+1)+1, 4*NE0*NE1+1, NE0*NE1+1,
                4*NE0+4*NE1+1, 2*NE0+2*NE1+1 ]
        # number of masked points, i.e. where X[0] is non-zero
        self.linecounts_masked=[ NE0*(NE1+1)+1, 4*NE0*NE1+1, NE0*NE1+1,
                4*NE0+2*NE1+1, 2*NE0+NE1+1 ]
        # expected values in first line of masked data = [ X[:], X[0] ]
        self.firstline=[ [1./NE0, 0., 1./NE0],
                         [None, None, None],
                         [None, None, None],
                         [None, None, None],
                         [None, None, None] ]

    def tearDown(self):
        del self.domain


class Test_randomOnMultiRipley(unittest.TestCase):
    def test_FillRectangle(self):
        fs=ContinuousFunction(Rectangle(n0=5*(int(sqrt(mpiSize)+1)),n1=5*(int(sqrt(mpiSize)+1))))
        RandomData((), fs, 2,("gaussian",1,0.5))
        RandomData((), fs, 0,("gaussian",2,0.76))
        self.assertRaises(NotImplementedError, RandomData, (2,2), fs, 0, ("gaussian",2,0.76)) #data not scalar
        self.assertRaises(ValueError, RandomData, (), fs, 0, ("gaussian",11,0.1)) #radius too large
        RandomData((2,3),fs)

    @unittest.skipIf(mpiSize > 1, "3D Multiresolution domains require single process")
    def test_FillBrick(self):
        # If we are going to do really big tests of this, the size of this brick will need to be reduced
        fs=ContinuousFunction(Brick(n0=5*mpiSize, n1=5*mpiSize, n2=5*mpiSize))
        RandomData((), fs, 2,("gaussian",1,0.5))
        RandomData((), fs, 0,("gaussian",2,0.76))
        self.assertRaises(NotImplementedError, RandomData, (2,2), fs, 0, ("gaussian",2,0.76)) #data not scalar
        self.assertRaises(ValueError, RandomData, (), fs, 0, ("gaussian",11,0.1)) #radius too large
        RandomData((2,3),fs)

class Test_multiResolution(unittest.TestCase):
    def test_MultiRectangle_constructors(self):
        with self.assertRaises(OverflowError): #negative is bad
            MultiRectangle(n0=2*mpiSize-1, n1=5, d0=mpiSize, multiplier=-1)
        with self.assertRaises(RuntimeError): #zero is bad
            MultiRectangle(n0=2*mpiSize-1, n1=5, d0=mpiSize, multiplier=0)
        with self.assertRaises(TypeError): #non-int is bad
            MultiRectangle(n0=2*mpiSize-1, n1=5, d0=mpiSize, multiplier=.5)
        with self.assertRaises(RuntimeError): #non-power of two is bad
            MultiRectangle(n0=2*mpiSize-1, n1=5, d0=mpiSize, multiplier=3)
        with self.assertRaises(Exception): #dimensions required
            MultiRectangle(n1=5, d1=mpiSize, multiplier=3)
        MultiRectangle(n0=2*mpiSize-1, n1=5, d0=mpiSize, multiplier=1)
        MultiRectangle(n0=2*mpiSize-1, n1=5, d0=mpiSize, multiplier=2)
        MultiRectangle(n0=2*mpiSize-1, n1=5, d0=mpiSize, multiplier=8)

    def test_RectangleInterpolation_NodesToNodesAndElements_CoarseToFine(self):
        mrd = MultiResolutionDomain(2, n0=2, n1=2*mpiSize-1, d1=mpiSize, l0=2)
        domains = [mrd.getLevel(i) for i in range(3)]
        X = [i.getX() for i in domains]

        for targetFS, name in [(Function, 'Function'),
                       (ContinuousFunction, 'ContinuousFunction'),
                       (ReducedContinuousFunction, 'ReducedContinuousFunction')]:
            for source_level in range(len(domains)):
                for target_level in range(source_level + 1, len(domains)):
                    val = Lsup(interpolate(X[target_level], targetFS(domains[target_level])) \
                            - interpolate(X[source_level], targetFS(domains[target_level])))
                    self.assertLess(val, 1e-12,
                            "Interpolation failure from %s level %d to %s level %d: %g !< 1e-12"%(\
                            'ContinuousFunction', source_level, name, target_level, val))

    def test_RectangleInterpolation_NodesToElements_FineToCoarse(self):
        mrd = MultiResolutionDomain(2, n0=2, n1=2*mpiSize-1, d1=mpiSize, l0=2)
        domains = [mrd.getLevel(i) for i in range(3)]
        X = [i.getX() for i in domains]

        for targetFS, name in [(Function, 'Function')]:
            for source_level in range(len(domains)):
                for target_level in range(0, source_level):
                    val = Lsup(interpolate(X[target_level], targetFS(domains[target_level])) \
                            - interpolate(X[source_level], targetFS(domains[target_level])))
                    self.assertLess(val, 1e-12,
                            "Interpolation failure from %s level %d to %s level %d: %g !< 1e-12"%(\
                            'ContinuousFunction', source_level, name, target_level, val))

    def test_RectangleInterpolation_ReducedToElements_CoarseToFine(self):
        mrd = MultiResolutionDomain(2, n0=2, n1=2*mpiSize-1, d1=mpiSize, l0=2)
        domains = [mrd.getLevel(i) for i in range(3)]
        X = [interpolate(i.getX(), ReducedFunction(i)) for i in domains]

        for targetFS, name in [(Function, 'Function')]:
            for source_level in range(len(domains)):
                for target_level in range(source_level + 1, len(domains)):
                    to = targetFS(domains[target_level])
                    desired = interpolate(X[source_level], Function(domains[source_level]))
                    val = Lsup(interpolate(X[source_level], to) - desired)
                    self.assertLess(val, 1e-12,
                            "Interpolation failure from %s level %d to %s level %d: %g !< 1e-12"%(\
                            'ReducedFunction', source_level, name, target_level, val))        

    def test_RectangleInterpolation_ElementsToElements_CoarseToFine(self):
        mrd = MultiResolutionDomain(2, n0=2, n1=2*mpiSize-1, d1=mpiSize, l0=2)
        domains = [mrd.getLevel(i) for i in range(3)]
        X = [interpolate(i.getX(), Function(i)) for i in domains]

        for targetFS, name in [(Function, 'Function')]:
            for source_level in range(len(domains)):
                for target_level in range(source_level + 1, len(domains)):
                    val = Lsup(interpolate(X[source_level], targetFS(domains[target_level])) \
                            - interpolate(X[target_level], targetFS(domains[target_level])))
                    if val > 1e-12:
                        print("Interpolation failure from %s level %d to %s level %d: %g !< 1e-12"%(\
                            'Function', source_level, name, target_level, val))
                    self.assertLess(val, 1e-12,
                            "Interpolation failure from %s level %d to %s level %d: %g !< 1e-12"%(\
                            'Function', source_level, name, target_level, val))

    def test_RectangleInterpolation_ElementsToElements_FineToCoarse(self):
        mrd = MultiResolutionDomain(2, n0=2, n1=2*mpiSize-1, d1=mpiSize, l0=2)
        d0 = mrd.getLevel(0)
        d1 = mrd.getLevel(1)
        d2 = mrd.getLevel(2)
        x0 = interpolate(d0.getX(), Function(d0))
        x1 = interpolate(d1.getX(), Function(d1))
        x2 = interpolate(d2.getX(), Function(d2))

        val = Lsup(x0 - interpolate(x1, Function(d0)))
        self.assertLess(val, 1e-12,
                "Interpolation failure from level 1 to level 0: %g !< 1e-12"%val)

        val = Lsup(x1 - interpolate(x2, Function(d1)))
        self.assertLess(val, 1e-12,
                "Interpolation failure from level 2 to level 1: %g !< 1e-12"%val)

        val = Lsup(x0 - interpolate(x2, Function(d0)))
        self.assertLess(val, 1e-12,
                "Interpolation failure from level 2 to level 0: %g !< 1e-12"%val)
        
        val = Lsup(integrate(interpolate(sin(x2[0]), Function(d0))*x0) - integrate(sin(x2[0])*x2))
        self.assertLess(val, 1e-12,
                "Interpolation failure: %g !< 1e-12"%val)

        val = integrate(interpolate(sin(x2[0]), Function(d0))*x0[0]*x0[1]) - integrate(sin(x2[0])*x2[0]*x2[1])
        self.assertLess(val, 1e-12,
                "Interpolation failure: %g !< 1e-12"%val)
        
        val = integrate(interpolate(sin(x2[0]), Function(d0))) - integrate(sin(x2[0]))
        self.assertLess(val, 1e-12,
                "Interpolation failure: %g !< 1e-12"%val)



    @unittest.skipIf(mpiSize > 1, "3D Multiresolution domains require single process")
    def test_MultiBrick_constructors(self):
        with self.assertRaises(OverflowError): #negative is bad
            MultiBrick(n0=2*mpiSize-1, n1=5, n2=3, d1=mpiSize, multiplier=-1)
        with self.assertRaises(RuntimeError): #zero is bad
            MultiBrick(n0=2*mpiSize-1, n1=5, n2=3, d1=mpiSize, multiplier=0)
        with self.assertRaises(TypeError): #non-int is bad
            MultiBrick(n0=2*mpiSize-1, n1=5, n2=3, d1=mpiSize, multiplier=.5)
        with self.assertRaises(RuntimeError): #non-power of two is bad
            MultiBrick(n0=2*mpiSize-1, n1=5, n2=3, d1=mpiSize, multiplier=3)
        with self.assertRaises(Exception): #dimensions required
            MultiBrick(n1=5, n2=3, d1=mpiSize, multiplier=3)
        MultiBrick(n0=2*mpiSize-1, n1=5, n2=3, d1=mpiSize, multiplier=1)
        MultiBrick(n0=2*mpiSize-1, n1=5, n2=3, d1=mpiSize, multiplier=2)
        MultiBrick(n0=2*mpiSize-1, n1=5, n2=3, d1=mpiSize, multiplier=8)

    @unittest.skipIf(mpiSize > 1, "3D Multiresolution domains require single process")
    def test_BrickInterpolation_NodesToNodesAndElements_CoarseToFine(self):
        mrd = MultiResolutionDomain(3, n0=2, n1=2*mpiSize, n2=3, d1=mpiSize, l0=2)
        domains = [mrd.getLevel(i) for i in range(3)]
        X = [i.getX() for i in domains]

        for targetFS, name in [(Function, 'Function'),
                       (ContinuousFunction, 'ContinuousFunction'),
                       (ReducedContinuousFunction, 'ReducedContinuousFunction')]:
            for source_level in range(len(domains)):
                for target_level in range(source_level + 1, len(domains)):
                    val = Lsup(interpolate(X[target_level], targetFS(domains[target_level])) \
                            - interpolate(X[source_level], targetFS(domains[target_level])))
                    self.assertLess(val, 1e-12,
                            "Interpolation failure from %s level %d to %s level %d: %g !< 1e-12"%(\
                            'ContinuousFunction', source_level, name, target_level, val))
    @unittest.skipIf(mpiSize > 1, "3D Multiresolution domains require single process")
    def test_BrickInterpolation_NodesToElements_FineToCoarse(self):
        mrd = MultiResolutionDomain(3, n0=2, n1=2*mpiSize, n2=3, d1=mpiSize, l0=2)
        domains = [mrd.getLevel(i) for i in range(3)]
        X = [i.getX() for i in domains]

        for targetFS, name in [(Function, 'Function')]:
            for source_level in range(len(domains)):
                for target_level in range(0, source_level):
                    val = Lsup(interpolate(X[target_level], targetFS(domains[target_level])) \
                            - interpolate(X[source_level], targetFS(domains[target_level])))
                    self.assertLess(val, 1e-12,
                            "Interpolation failure from %s level %d to %s level %d: %g !< 1e-12"%(\
                            'ContinuousFunction', source_level, name, target_level, val))
    @unittest.skipIf(mpiSize > 1, "3D Multiresolution domains require single process")
    def test_BrickInterpolation_ReducedToElements_CoarseToFine(self):
        mrd = MultiResolutionDomain(3, n0=2, n1=2*mpiSize, n2=3, d1=mpiSize, l0=2)
        domains = [mrd.getLevel(i) for i in range(3)]
        X = [interpolate(i.getX(), ReducedFunction(i)) for i in domains]

        for targetFS, name in [(Function, 'Function')]:
            for source_level in range(len(domains)):
                for target_level in range(source_level + 1, len(domains)):
                    to = targetFS(domains[target_level])
                    desired = interpolate(X[source_level], Function(domains[source_level]))
                    val = Lsup(interpolate(X[source_level], to) \
                            - interpolate(desired, to))
                    self.assertLess(val, 1e-12,
                            "Interpolation failure from %s level %d to %s level %d: %g !< 1e-12"%(\
                            'ReducedFunction', source_level, name, target_level, val))        

    @unittest.skipIf(mpiSize > 1, "3D Multiresolution domains require single process")
    def test_BrickInterpolation_ElementsToElements_CoarseToFine(self):
        mrd = MultiResolutionDomain(3, n0=2, n1=2*mpiSize, n2=2, d1=mpiSize, l0=2)
        domains = [mrd.getLevel(i) for i in range(3)]
        X = [interpolate(i.getX(), Function(i)) for i in domains]

        for targetFS, name in [(Function, 'Function')]:
            for source_level in range(len(domains)):
                for target_level in range(source_level + 1, len(domains)):
                    val = Lsup(interpolate(X[target_level], targetFS(domains[target_level])) \
                            - interpolate(X[source_level], targetFS(domains[target_level])))
                    self.assertLess(val, 1e-12,
                            "Interpolation failure from %s level %d to %s level %d: %g !< 1e-12"%(\
                            'Function', source_level, name, target_level, val))

    @unittest.skipIf(mpiSize > 1, "3D Multiresolution domains require single process")
    def test_BrickInterpolation_ElementsToElements_FineToCoarse(self):
        mrd = MultiResolutionDomain(3, n0=2, n1=2*mpiSize, n2=3, d1=mpiSize, l0=2)
        d0 = mrd.getLevel(0)
        d1 = mrd.getLevel(1)
        d2 = mrd.getLevel(2)
        x0 = interpolate(d0.getX(), Function(d0))
        x1 = interpolate(d1.getX(), Function(d1))
        x2 = interpolate(d2.getX(), Function(d2))

        val = Lsup(x0 - interpolate(x1, Function(d0)))
        self.assertLess(val, 1e-12,
                "Interpolation failure from level 1 to level 0: %g !< 1e-12"%val)

        val = Lsup(x1 - interpolate(x2, Function(d1)))
        self.assertLess(val, 1e-12,
                "Interpolation failure from level 2 to level 1: %g !< 1e-12"%val)

        val = Lsup(x0 - interpolate(x2, Function(d0)))
        self.assertLess(val, 1e-12,
                "Interpolation failure from level 2 to level 0: %g !< 1e-12"%val)
        
        val = Lsup(integrate(interpolate(sin(x2[0]), Function(d0))*x0) - integrate(sin(x2[0])*x2))
        self.assertLess(val, 1e-12,
                "Interpolation failure: %g !< 1e-12"%val)

        val = integrate(interpolate(sin(x2[0]), Function(d0))*x0[0]*x0[1]*x0[2]) - integrate(sin(x2[0])*x2[0]*x2[1]*x2[2])
        self.assertLess(val, 1e-12,
                "Interpolation failure: %g !< 1e-12"%val)
        
        val = integrate(interpolate(sin(x2[0]), Function(d0))) - integrate(sin(x2[0]))
        self.assertLess(val, 1e-12,
                "Interpolation failure: %g !< 1e-12"%val)



if __name__ == '__main__':
    run_tests(__name__, exit_on_failure=True)