1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
|
##############################################################################
#
# Copyright (c) 2003-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
from __future__ import print_function, division
__copyright__="""Copyright (c) 2003-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
import os
import sys
import esys.escriptcore.utestselect as unittest
from esys.escriptcore.testing import *
from esys.escript import *
from esys.ripley import MultiRectangle, MultiBrick, ripleycpp, MultiResolutionDomain
from test_objects import Test_Dump, Test_SetDataPointValue, Test_saveCSV, Test_TableInterpolation
from test_objects import Test_Domain, Test_Lazy
from test_shared import Test_Shared
from run_escriptOnRipley import Test_SharedOnRipley, Test_DomainOnRipley, \
Test_TableInterpolationOnRipley, Test_DataOpsOnRipley, \
Test_CSVOnRipley
def Rectangle(**kwargs):
m = MultiResolutionDomain(2, **kwargs)
return m.getLevel(1)
def Brick(**kwargs):
m = MultiResolutionDomain(3, **kwargs)
return m.getLevel(1)
try:
RIPLEY_WORKDIR=os.environ['RIPLEY_WORKDIR']
except KeyError:
RIPLEY_WORKDIR='.'
NE=4 # number elements, must be even
mpiSize=getMPISizeWorld()
for x in [int(sqrt(mpiSize)),2,3,5,7,1]:
NX=x
NY=mpiSize//x
if NX*NY == mpiSize:
break
for x in [(int(mpiSize**(1/3.)),int(mpiSize**(1/3.))),(2,3),(2,2),(1,2),(1,1)]:
NXb=x[0]
NYb=x[1]
NZb=mpiSize//(x[0]*x[1])
if NXb*NYb*NZb == mpiSize:
break
class Test_SharedOnMultiRipley(Test_SharedOnRipley):
def setUp(self):
self.domain=Rectangle(n0=NE*NX-1, n1=NE*NY-1, l0=1., l1=1., d0=NX, d1=NY)
self.tol=0.001
def tearDown(self):
del self.domain
del self.tol
class Test_DomainOnMultiRipley(Test_DomainOnRipley):
def setUp(self):
self.boundary_tag_list = [1, 2, 10, 20]
self.domain=Rectangle(n0=NE*NX-1, n1=NE*NY-1, l0=1., l1=1., d0=NX, d1=NY)
self.rdomain=Rectangle(n0=(NE+6)*NX-1, n1=(NE+6)*NY-1, l0=1., l1=1., d0=NX, d1=NY)
def tearDown(self):
del self.domain
del self.boundary_tag_list
class Test_DataOpsOnMultiRipley(Test_DataOpsOnRipley):
def setUp(self):
self.domain=Rectangle(n0=NE*NX-1, n1=NE*NY-1, l0=1., l1=1., d0=NX, d1=NY)
self.domain_with_different_number_of_samples=Rectangle(n0=7*NE*NX-1, n1=3*NE*NY-1, l0=1., l1=1., d0=NX, d1=NY)
self.domain_with_different_number_of_data_points_per_sample=Rectangle(n0=7*NE*NX-1, n1=3*NE*NY-1, l0=1., l1=1., d0=NX, d1=NY)
self.domain_with_different_sample_ordering=Rectangle(n0=NE*NX-1, n1=NE*NY-1, l0=1., l1=1., d0=NX, d1=NY)
self.filename_base=RIPLEY_WORKDIR
self.mainfs=Function(self.domain)
self.otherfs=Solution(self.domain)
def tearDown(self):
del self.domain
del self.domain_with_different_number_of_samples
del self.domain_with_different_number_of_data_points_per_sample
del self.domain_with_different_sample_ordering
del self.mainfs
del self.otherfs
@unittest.skipIf(mpiSize > 1, "Multiresolution domains require single process")
class Test_TableInterpolationOnMultiRipley(Test_TableInterpolationOnRipley):
def setUp(self):
self.domain = Brick(n0=NE*NXb-1, n1=NE*NYb-1, n2=NE*NZb-1, l0=1., l1=1., l2=1., d0=NXb, d1=NYb, d2=NZb)
self.functionspaces=[ContinuousFunction(self.domain), Function(self.domain), ReducedFunction(self.domain),
FunctionOnBoundary(self.domain), ReducedFunctionOnBoundary(self.domain)]
#We aren't testing DiracDeltaFunctions
self.xn=5 # number of grids on x axis
self.yn=5 # number of grids on y axis
self.zn=5
def tearDown(self):
del self.domain
del self.functionspaces
class Test_CSVOnMultiRipley(Test_CSVOnRipley):
def setUp(self):
self.workdir=RIPLEY_WORKDIR
self.domain=Rectangle(n0=NE*NX-1, n1=NE*NY-1, l0=1., l1=1., d0=NX, d1=NY)
self.functionspaces=[ContinuousFunction, Function, ReducedFunction,
FunctionOnBoundary, ReducedFunctionOnBoundary]
NE0 = (NE*NX-1)*2
NE1 = (NE*NY-1)*2
# number of total data points for each function space
self.linecounts=[ (NE0+1)*(NE1+1)+1, 4*NE0*NE1+1, NE0*NE1+1,
4*NE0+4*NE1+1, 2*NE0+2*NE1+1 ]
# number of masked points, i.e. where X[0] is non-zero
self.linecounts_masked=[ NE0*(NE1+1)+1, 4*NE0*NE1+1, NE0*NE1+1,
4*NE0+2*NE1+1, 2*NE0+NE1+1 ]
# expected values in first line of masked data = [ X[:], X[0] ]
self.firstline=[ [1./NE0, 0., 1./NE0],
[None, None, None],
[None, None, None],
[None, None, None],
[None, None, None] ]
def tearDown(self):
del self.domain
class Test_randomOnMultiRipley(unittest.TestCase):
def test_FillRectangle(self):
fs=ContinuousFunction(Rectangle(n0=5*(int(sqrt(mpiSize)+1)),n1=5*(int(sqrt(mpiSize)+1))))
RandomData((), fs, 2,("gaussian",1,0.5))
RandomData((), fs, 0,("gaussian",2,0.76))
self.assertRaises(NotImplementedError, RandomData, (2,2), fs, 0, ("gaussian",2,0.76)) #data not scalar
self.assertRaises(ValueError, RandomData, (), fs, 0, ("gaussian",11,0.1)) #radius too large
RandomData((2,3),fs)
@unittest.skipIf(mpiSize > 1, "3D Multiresolution domains require single process")
def test_FillBrick(self):
# If we are going to do really big tests of this, the size of this brick will need to be reduced
fs=ContinuousFunction(Brick(n0=5*mpiSize, n1=5*mpiSize, n2=5*mpiSize))
RandomData((), fs, 2,("gaussian",1,0.5))
RandomData((), fs, 0,("gaussian",2,0.76))
self.assertRaises(NotImplementedError, RandomData, (2,2), fs, 0, ("gaussian",2,0.76)) #data not scalar
self.assertRaises(ValueError, RandomData, (), fs, 0, ("gaussian",11,0.1)) #radius too large
RandomData((2,3),fs)
class Test_multiResolution(unittest.TestCase):
def test_MultiRectangle_constructors(self):
with self.assertRaises(OverflowError): #negative is bad
MultiRectangle(n0=2*mpiSize-1, n1=5, d0=mpiSize, multiplier=-1)
with self.assertRaises(RuntimeError): #zero is bad
MultiRectangle(n0=2*mpiSize-1, n1=5, d0=mpiSize, multiplier=0)
with self.assertRaises(TypeError): #non-int is bad
MultiRectangle(n0=2*mpiSize-1, n1=5, d0=mpiSize, multiplier=.5)
with self.assertRaises(RuntimeError): #non-power of two is bad
MultiRectangle(n0=2*mpiSize-1, n1=5, d0=mpiSize, multiplier=3)
with self.assertRaises(Exception): #dimensions required
MultiRectangle(n1=5, d1=mpiSize, multiplier=3)
MultiRectangle(n0=2*mpiSize-1, n1=5, d0=mpiSize, multiplier=1)
MultiRectangle(n0=2*mpiSize-1, n1=5, d0=mpiSize, multiplier=2)
MultiRectangle(n0=2*mpiSize-1, n1=5, d0=mpiSize, multiplier=8)
def test_RectangleInterpolation_NodesToNodesAndElements_CoarseToFine(self):
mrd = MultiResolutionDomain(2, n0=2, n1=2*mpiSize-1, d1=mpiSize, l0=2)
domains = [mrd.getLevel(i) for i in range(3)]
X = [i.getX() for i in domains]
for targetFS, name in [(Function, 'Function'),
(ContinuousFunction, 'ContinuousFunction'),
(ReducedContinuousFunction, 'ReducedContinuousFunction')]:
for source_level in range(len(domains)):
for target_level in range(source_level + 1, len(domains)):
val = Lsup(interpolate(X[target_level], targetFS(domains[target_level])) \
- interpolate(X[source_level], targetFS(domains[target_level])))
self.assertLess(val, 1e-12,
"Interpolation failure from %s level %d to %s level %d: %g !< 1e-12"%(\
'ContinuousFunction', source_level, name, target_level, val))
def test_RectangleInterpolation_NodesToElements_FineToCoarse(self):
mrd = MultiResolutionDomain(2, n0=2, n1=2*mpiSize-1, d1=mpiSize, l0=2)
domains = [mrd.getLevel(i) for i in range(3)]
X = [i.getX() for i in domains]
for targetFS, name in [(Function, 'Function')]:
for source_level in range(len(domains)):
for target_level in range(0, source_level):
val = Lsup(interpolate(X[target_level], targetFS(domains[target_level])) \
- interpolate(X[source_level], targetFS(domains[target_level])))
self.assertLess(val, 1e-12,
"Interpolation failure from %s level %d to %s level %d: %g !< 1e-12"%(\
'ContinuousFunction', source_level, name, target_level, val))
def test_RectangleInterpolation_ReducedToElements_CoarseToFine(self):
mrd = MultiResolutionDomain(2, n0=2, n1=2*mpiSize-1, d1=mpiSize, l0=2)
domains = [mrd.getLevel(i) for i in range(3)]
X = [interpolate(i.getX(), ReducedFunction(i)) for i in domains]
for targetFS, name in [(Function, 'Function')]:
for source_level in range(len(domains)):
for target_level in range(source_level + 1, len(domains)):
to = targetFS(domains[target_level])
desired = interpolate(X[source_level], Function(domains[source_level]))
val = Lsup(interpolate(X[source_level], to) - desired)
self.assertLess(val, 1e-12,
"Interpolation failure from %s level %d to %s level %d: %g !< 1e-12"%(\
'ReducedFunction', source_level, name, target_level, val))
def test_RectangleInterpolation_ElementsToElements_CoarseToFine(self):
mrd = MultiResolutionDomain(2, n0=2, n1=2*mpiSize-1, d1=mpiSize, l0=2)
domains = [mrd.getLevel(i) for i in range(3)]
X = [interpolate(i.getX(), Function(i)) for i in domains]
for targetFS, name in [(Function, 'Function')]:
for source_level in range(len(domains)):
for target_level in range(source_level + 1, len(domains)):
val = Lsup(interpolate(X[source_level], targetFS(domains[target_level])) \
- interpolate(X[target_level], targetFS(domains[target_level])))
if val > 1e-12:
print("Interpolation failure from %s level %d to %s level %d: %g !< 1e-12"%(\
'Function', source_level, name, target_level, val))
self.assertLess(val, 1e-12,
"Interpolation failure from %s level %d to %s level %d: %g !< 1e-12"%(\
'Function', source_level, name, target_level, val))
def test_RectangleInterpolation_ElementsToElements_FineToCoarse(self):
mrd = MultiResolutionDomain(2, n0=2, n1=2*mpiSize-1, d1=mpiSize, l0=2)
d0 = mrd.getLevel(0)
d1 = mrd.getLevel(1)
d2 = mrd.getLevel(2)
x0 = interpolate(d0.getX(), Function(d0))
x1 = interpolate(d1.getX(), Function(d1))
x2 = interpolate(d2.getX(), Function(d2))
val = Lsup(x0 - interpolate(x1, Function(d0)))
self.assertLess(val, 1e-12,
"Interpolation failure from level 1 to level 0: %g !< 1e-12"%val)
val = Lsup(x1 - interpolate(x2, Function(d1)))
self.assertLess(val, 1e-12,
"Interpolation failure from level 2 to level 1: %g !< 1e-12"%val)
val = Lsup(x0 - interpolate(x2, Function(d0)))
self.assertLess(val, 1e-12,
"Interpolation failure from level 2 to level 0: %g !< 1e-12"%val)
val = Lsup(integrate(interpolate(sin(x2[0]), Function(d0))*x0) - integrate(sin(x2[0])*x2))
self.assertLess(val, 1e-12,
"Interpolation failure: %g !< 1e-12"%val)
val = integrate(interpolate(sin(x2[0]), Function(d0))*x0[0]*x0[1]) - integrate(sin(x2[0])*x2[0]*x2[1])
self.assertLess(val, 1e-12,
"Interpolation failure: %g !< 1e-12"%val)
val = integrate(interpolate(sin(x2[0]), Function(d0))) - integrate(sin(x2[0]))
self.assertLess(val, 1e-12,
"Interpolation failure: %g !< 1e-12"%val)
@unittest.skipIf(mpiSize > 1, "3D Multiresolution domains require single process")
def test_MultiBrick_constructors(self):
with self.assertRaises(OverflowError): #negative is bad
MultiBrick(n0=2*mpiSize-1, n1=5, n2=3, d1=mpiSize, multiplier=-1)
with self.assertRaises(RuntimeError): #zero is bad
MultiBrick(n0=2*mpiSize-1, n1=5, n2=3, d1=mpiSize, multiplier=0)
with self.assertRaises(TypeError): #non-int is bad
MultiBrick(n0=2*mpiSize-1, n1=5, n2=3, d1=mpiSize, multiplier=.5)
with self.assertRaises(RuntimeError): #non-power of two is bad
MultiBrick(n0=2*mpiSize-1, n1=5, n2=3, d1=mpiSize, multiplier=3)
with self.assertRaises(Exception): #dimensions required
MultiBrick(n1=5, n2=3, d1=mpiSize, multiplier=3)
MultiBrick(n0=2*mpiSize-1, n1=5, n2=3, d1=mpiSize, multiplier=1)
MultiBrick(n0=2*mpiSize-1, n1=5, n2=3, d1=mpiSize, multiplier=2)
MultiBrick(n0=2*mpiSize-1, n1=5, n2=3, d1=mpiSize, multiplier=8)
@unittest.skipIf(mpiSize > 1, "3D Multiresolution domains require single process")
def test_BrickInterpolation_NodesToNodesAndElements_CoarseToFine(self):
mrd = MultiResolutionDomain(3, n0=2, n1=2*mpiSize, n2=3, d1=mpiSize, l0=2)
domains = [mrd.getLevel(i) for i in range(3)]
X = [i.getX() for i in domains]
for targetFS, name in [(Function, 'Function'),
(ContinuousFunction, 'ContinuousFunction'),
(ReducedContinuousFunction, 'ReducedContinuousFunction')]:
for source_level in range(len(domains)):
for target_level in range(source_level + 1, len(domains)):
val = Lsup(interpolate(X[target_level], targetFS(domains[target_level])) \
- interpolate(X[source_level], targetFS(domains[target_level])))
self.assertLess(val, 1e-12,
"Interpolation failure from %s level %d to %s level %d: %g !< 1e-12"%(\
'ContinuousFunction', source_level, name, target_level, val))
@unittest.skipIf(mpiSize > 1, "3D Multiresolution domains require single process")
def test_BrickInterpolation_NodesToElements_FineToCoarse(self):
mrd = MultiResolutionDomain(3, n0=2, n1=2*mpiSize, n2=3, d1=mpiSize, l0=2)
domains = [mrd.getLevel(i) for i in range(3)]
X = [i.getX() for i in domains]
for targetFS, name in [(Function, 'Function')]:
for source_level in range(len(domains)):
for target_level in range(0, source_level):
val = Lsup(interpolate(X[target_level], targetFS(domains[target_level])) \
- interpolate(X[source_level], targetFS(domains[target_level])))
self.assertLess(val, 1e-12,
"Interpolation failure from %s level %d to %s level %d: %g !< 1e-12"%(\
'ContinuousFunction', source_level, name, target_level, val))
@unittest.skipIf(mpiSize > 1, "3D Multiresolution domains require single process")
def test_BrickInterpolation_ReducedToElements_CoarseToFine(self):
mrd = MultiResolutionDomain(3, n0=2, n1=2*mpiSize, n2=3, d1=mpiSize, l0=2)
domains = [mrd.getLevel(i) for i in range(3)]
X = [interpolate(i.getX(), ReducedFunction(i)) for i in domains]
for targetFS, name in [(Function, 'Function')]:
for source_level in range(len(domains)):
for target_level in range(source_level + 1, len(domains)):
to = targetFS(domains[target_level])
desired = interpolate(X[source_level], Function(domains[source_level]))
val = Lsup(interpolate(X[source_level], to) \
- interpolate(desired, to))
self.assertLess(val, 1e-12,
"Interpolation failure from %s level %d to %s level %d: %g !< 1e-12"%(\
'ReducedFunction', source_level, name, target_level, val))
@unittest.skipIf(mpiSize > 1, "3D Multiresolution domains require single process")
def test_BrickInterpolation_ElementsToElements_CoarseToFine(self):
mrd = MultiResolutionDomain(3, n0=2, n1=2*mpiSize, n2=2, d1=mpiSize, l0=2)
domains = [mrd.getLevel(i) for i in range(3)]
X = [interpolate(i.getX(), Function(i)) for i in domains]
for targetFS, name in [(Function, 'Function')]:
for source_level in range(len(domains)):
for target_level in range(source_level + 1, len(domains)):
val = Lsup(interpolate(X[target_level], targetFS(domains[target_level])) \
- interpolate(X[source_level], targetFS(domains[target_level])))
self.assertLess(val, 1e-12,
"Interpolation failure from %s level %d to %s level %d: %g !< 1e-12"%(\
'Function', source_level, name, target_level, val))
@unittest.skipIf(mpiSize > 1, "3D Multiresolution domains require single process")
def test_BrickInterpolation_ElementsToElements_FineToCoarse(self):
mrd = MultiResolutionDomain(3, n0=2, n1=2*mpiSize, n2=3, d1=mpiSize, l0=2)
d0 = mrd.getLevel(0)
d1 = mrd.getLevel(1)
d2 = mrd.getLevel(2)
x0 = interpolate(d0.getX(), Function(d0))
x1 = interpolate(d1.getX(), Function(d1))
x2 = interpolate(d2.getX(), Function(d2))
val = Lsup(x0 - interpolate(x1, Function(d0)))
self.assertLess(val, 1e-12,
"Interpolation failure from level 1 to level 0: %g !< 1e-12"%val)
val = Lsup(x1 - interpolate(x2, Function(d1)))
self.assertLess(val, 1e-12,
"Interpolation failure from level 2 to level 1: %g !< 1e-12"%val)
val = Lsup(x0 - interpolate(x2, Function(d0)))
self.assertLess(val, 1e-12,
"Interpolation failure from level 2 to level 0: %g !< 1e-12"%val)
val = Lsup(integrate(interpolate(sin(x2[0]), Function(d0))*x0) - integrate(sin(x2[0])*x2))
self.assertLess(val, 1e-12,
"Interpolation failure: %g !< 1e-12"%val)
val = integrate(interpolate(sin(x2[0]), Function(d0))*x0[0]*x0[1]*x0[2]) - integrate(sin(x2[0])*x2[0]*x2[1]*x2[2])
self.assertLess(val, 1e-12,
"Interpolation failure: %g !< 1e-12"%val)
val = integrate(interpolate(sin(x2[0]), Function(d0))) - integrate(sin(x2[0]))
self.assertLess(val, 1e-12,
"Interpolation failure: %g !< 1e-12"%val)
if __name__ == '__main__':
run_tests(__name__, exit_on_failure=True)
|