1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
|
##############################################################################
#
# Copyright (c) 2009-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
from __future__ import division, print_function
__copyright__="""Copyright (c) 2009-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
"""
Additional routines using matplotlib for cookbook examples.
Author: Antony Hallam antony.hallam@uqconnect.edu.au
"""
from esys.escript import inf,sup
from esys.escript.pdetools import Locator
import numpy as np
# try:
# import pylab as pl
# HAVE_PYLAB=True
# except:
# HAVE_PYLAB=False
try:
import scipy.interpolate
HAVE_SCIPY=True
except:
HAVE_SCIPY=False
def toXYTuple(coords):
"""
extracts the X and Y coordinates as two ```numpy`` arrays from the escript coordinates ```coords``` as produced by a ``.getX`` call.
"""
coords = np.array(coords.toListOfTuples()) #convert to array
coordX = coords[:,0]; coordY = coords[:,1] #X and Y components.
return coordX,coordY
if HAVE_SCIPY:
def toRegGrid(u, nx=50, ny=50):
"""
returns a nx x ny grid representation of the escript object u
"""
xx=u.getDomain().getX()
x=u.getFunctionSpace().getX()
coordX, coordY = toXYTuple(x)
utemp = u.toListOfTuples()
# create regular grid
xi = np.linspace(inf(xx[0]),sup(xx[0]),nx)
yi = np.linspace(inf(xx[1]),sup(xx[1]),ny)
# interpolate u to grid
zi = scipy.interpolate.griddata((coordX,coordY),utemp,(xi[None,:],yi[:,None]),method='linear')
return xi, yi, zi
else:
print("This feature requires scipy")
def subsample(u, nx=50, ny=50):
"""
subsamples ```u``` over an ```nx``` x ```ny``` grid
and returns ``numpy`` arrays for the values and locations
used for subsampling.
"""
xx=u.getDomain().getX() # points of the domain
x0=inf(xx[0])
y0=inf(xx[1])
dx = (sup(xx[0])-x0)/nx # x spacing
dy = (sup(xx[1])-y0)/ny # y spacing
grid = [ ]
for j in range(0,ny-1):
for i in range(0,nx-1):
grid.append([x0+dx/2+dx*i,y0+dy/2+dy*j])
uLoc = Locator(u.getFunctionSpace(),grid)
subu= uLoc(u) # get data of u at sample points closests to grid points
usublocs = uLoc.getX() #returns actual locations from data
return np.array(usublocs), np.array(subu)
|