File: example10c_0.py

package info (click to toggle)
python-escript 5.6-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 144,196 kB
  • sloc: python: 592,057; cpp: 136,909; ansic: 18,675; javascript: 9,411; xml: 3,384; sh: 740; makefile: 203
file content (196 lines) | stat: -rw-r--r-- 8,341 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
##############################################################################
#
# Copyright (c) 2003-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
from __future__ import division, print_function

__copyright__="""Copyright (c) 2003-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"

from esys.escript import *
from esys.pycad import *
from esys.pycad.gmsh import Design
from esys.escript.unitsSI import *
from math import tan
import os

try:
    # This imports the rectangle domain function 
    from esys.finley import MakeDomain
    HAVE_FINLEY = True
except ImportError:
    print("Finley module not available")
    HAVE_FINLEY = False
#the folder to put our outputs in, leave blank "" for script path 
save_path= os.path.join("data","example10")
#
#   input data:
#
width=5*km
length=5*km
depth=2*km
fault_w_front=200*m
fault_w_back=200*m
fault_mid_front=2*km
fault_mid_back=4*km
fault_dip_front=30*DEG
fault_dip_back=30*DEG

layers_left_at_front=[ [ 'limestone' ,  1100*m ] , [  'xx' , 150*m ] ,['shale',300*m],  [ 'limestone' ] ]
layers_right_at_front=[ [ 'limestone' , 500*m ], [ 'xx' , 150*m ],['shale',300*m], ['limestone' ] ]
slop=2*DEG
#
# ====================================================================================
#
def setOffsetsFromThickness(layers):
   l=0
   offsets=[]
   for n in layers:
       if  len(n)<2:
          d=depth-l
          if depth-l <=0:
              raise "Layer structure is too thick. Increase depth > %e"%l
       else:
          d=n[1]
       l+=d
       offsets.append([ n[0], -(l-d), d, -l ])
   return offsets
def setVerticalPositionsFromDip(layers, dip):
   offsets=[]
   s=1/tan(90*DEG-dip)
   for n in layers:
        name=n[0]
        top=n[1]
        d=n[2]
        bot=n[3]
        offsets.append([ name, top, s*top, d, bot, s*bot ] )
   return offsets

def setBackLayers(layers, slop, dip):
      if layers[0][3]-tan(slop)*length <=0:
          raise ValueError("negative thickness in %s at back"%(layers[0][0],))
      out=[[ layers[0][0], layers[0][3]-tan(slop)*length ]]
      for i in range(1,len(layers)-1): out.append([layers[i][0], layers[i][3] ])
      out.append([ layers[-1][0] ])
      out=setOffsetsFromThickness(out)
      return setVerticalPositionsFromDip(out, dip)

def getCutLine(p0,layers,offset=True):
    out=[ ]
    p=p0
    for n in layers:
       if offset:
          p1,p = p, Point(p0.getCoordinates()[0]+n[5],p0.getCoordinates()[1],p0.getCoordinates()[2]+n[4])
       else:
          p1,p = p, Point(p0.getCoordinates()[0],p0.getCoordinates()[1],p0.getCoordinates()[2]+n[4])
       out.append(Line(p1,p))
    return out

def getBackLine(front, back):
    out = [ Line(front[0].getStartPoint(), back[0].getStartPoint()) ]
    for i in range(len(front)):
        out.append(Line(front[i].getEndPoint(), back[i].getEndPoint()))
    return out

def getCrossLine(left, right):
    return getBackLine(left,right)     

def addVolume(front_left, back_left, front_right, back_right, PS, FF, map, filter_left=False):
  
    front_to_back_left = getBackLine(front_left , back_left)
    front_to_back_right = getBackLine(front_right , back_right)
    front_left_to_right= getCrossLine(front_left, front_right)
    back_left_to_right= getCrossLine(back_left, back_right)

     #if filter_left:
      #  out1=front_to_back_left[0]
      #  out2=front_to_back_left[-1]
     #else:
    out1=front_to_back_right[0]
    out2=front_to_back_right[-1]

    topface=PlaneSurface(CurveLoop(front_left_to_right[0], front_to_back_right[0], -back_left_to_right[0], -front_to_back_left[0]))
    for i in range(len(map)):
        name=map[i][0]
        face2=PlaneSurface(CurveLoop(front_left_to_right[i+1], front_to_back_right[i+1], -back_left_to_right[i+1], -front_to_back_left[i+1]))
        face_front=PlaneSurface(CurveLoop(front_left_to_right[i+1], -front_right[i], -front_left_to_right[i],  front_left[i]))
        face_back=PlaneSurface(CurveLoop(back_left_to_right[i+1], -back_right[i], -back_left_to_right[i],  back_left[i]))
        face_left=PlaneSurface(CurveLoop(front_left[i], front_to_back_left[i+1], -back_left[i], -front_to_back_left[i]))
        face_right=PlaneSurface(CurveLoop(front_right[i], front_to_back_right[i+1], -back_right[i], -front_to_back_right[i]))
        
        v=Volume(SurfaceLoop(topface,-face2, face_front, -face_back, -face_left, face_right))
        print(v)
        topface=face2
        if filter_left:
            FF.append(face_right)
        else:
            FF.append(-face_right)
        if name not in PS: PS[name]=PropertySet(name)
        PS[name].addItem(v)
    return out1, out2, PS, FF
    
    
       
if HAVE_FINLEY:
    layers_left_at_edge_at_front=setOffsetsFromThickness(layers_left_at_front)
    layers_right_at_edge_at_front=setOffsetsFromThickness(layers_right_at_front)

    layers_left_at_front=setVerticalPositionsFromDip(layers_left_at_edge_at_front, fault_dip_front)
    layers_right_at_front=setVerticalPositionsFromDip(layers_right_at_edge_at_front, fault_dip_front)


    layers_left_at_back=setBackLayers(layers_left_at_front, slop, fault_dip_back)
    layers_right_at_back=setBackLayers(layers_right_at_front, slop, fault_dip_back)


    left_front_edge=getCutLine(Point(0.,0.,0.), layers_left_at_front, offset=False)
    left_front_fault=getCutLine(Point(fault_mid_front-fault_w_front/2,0.,0.), layers_left_at_front, offset=True)

    right_front_fault=getCutLine(Point(fault_mid_front+fault_w_front/2,0.,0.), layers_right_at_front, offset=True)
    right_front_edge=getCutLine(Point(width,0.,0.), layers_right_at_front, offset=False)

    left_back_edge=getCutLine(Point(0.,length,0.), layers_left_at_back, offset=False)
    left_back_fault=getCutLine(Point(fault_mid_back-fault_w_back/2,length,0.), layers_left_at_back, offset=True)

    right_back_fault=getCutLine(Point(fault_mid_back+fault_w_back/2,length,0.), layers_right_at_back, offset=True)
    right_back_edge=getCutLine(Point(width,length,0.), layers_right_at_back, offset=False)

    PS={}
    FF=[]
    front_to_back_left_top, front_to_back_left_bot, PS, FF=addVolume(left_front_edge, left_back_edge, left_front_fault, left_back_fault, PS, FF, layers_left_at_front, filter_left=False)
    front_to_back_right_top, front_to_back_right_bot, PS, FF=addVolume(right_front_edge, right_back_edge, right_front_fault, right_back_fault, PS, FF, layers_right_at_front, filter_left=True)

    fault_line_top_front=Line(front_to_back_left_top.getStartPoint(), front_to_back_right_top.getStartPoint())
    fault_line_bot_front=Line(front_to_back_left_bot.getStartPoint(), front_to_back_right_bot.getStartPoint())
    fault_line_top_back=Line(front_to_back_left_top.getEndPoint(), front_to_back_right_top.getEndPoint())
    fault_line_bot_back=Line(front_to_back_left_bot.getEndPoint(), front_to_back_right_bot.getEndPoint())

    FF.append(PlaneSurface(CurveLoop(front_to_back_left_top,fault_line_top_back,-front_to_back_right_top,-fault_line_top_front)))
    FF.append(-PlaneSurface(CurveLoop(front_to_back_left_bot,fault_line_bot_back,-front_to_back_right_bot,-fault_line_bot_front)))

    FF.append(PlaneSurface(CurveLoop(*tuple([ -fault_line_top_front,fault_line_bot_front ]+left_front_fault+[ -l for l in right_front_fault ]))))
    FF.append(-PlaneSurface(CurveLoop(*tuple([ -fault_line_top_back,fault_line_bot_back ]+left_back_fault+[ -l for l in right_back_fault ]))))


    # war 120
    des=Design(dim=3, order=1, element_size = 400*m, keep_files=True)
    des.addItems(*tuple(PS.values()))
    des.addItems(PropertySet("fault",Volume(SurfaceLoop( *tuple(FF)))))
    des.setMeshFileName(os.path.join(save_path,"fault.msh"))
    dom=MakeDomain(des)
    dom.write(os.path.join(save_path,"fault.fly"))