1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
##############################################################################
#
# Copyright (c) 2009-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
from __future__ import division, print_function
__copyright__="""Copyright (c) 2009-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
"""
Author: Antony Hallam antony.hallam@uqconnect.edu.au
"""
############################################################FILE HEADER
# example10d.py
# Model of gravitational Potential for a gravity POLE.
#######################################################EXTERNAL MODULES
# To solve the problem it is necessary to import the modules we require.
import matplotlib
matplotlib.use('agg') #Its just here for automated testing
from esys.escript import * # This imports everything from the escript library
from esys.escript.unitsSI import *
from esys.escript.linearPDEs import LinearPDE # This defines LinearPDE as LinearPDE
from esys.weipa import saveVTK # This imports the VTK file saver from weipa
import os, sys #This package is necessary to handle saving our data.
from math import pi, sqrt, sin, cos
from esys.escript.pdetools import Projector, Locator
from esys.finley import ReadGmsh
import pylab as pl #Plotting package
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
try:
from scipy.optimize import leastsq
HAVE_SCIPY=True
except:
HAVE_SCIPY=False
try:
# This imports the rectangle domain function
from esys.finley import MakeDomain
HAVE_FINLEY = True
except ImportError:
print("Finley module not available")
HAVE_FINLEY = False
########################################################MPI WORLD CHECK
if getMPISizeWorld() > 1:
import sys
print("This example will not run in an MPI world.")
sys.exit(0)
if HAVE_FINLEY and HAVE_SCIPY:
#################################################ESTABLISHING VARIABLES
#Domain related.
mx = 10000*m #meters - model length
my = 10000*m #meters - model width
#PDE related
rho=10.0
rholoc=[mx/2.,my/2.]
G=6.67300*10E-11
R=10
z=50.
################################################ESTABLISHING PARAMETERS
#the folder to put our outputs in, leave blank "" for script path
save_path= os.path.join("data","example10")
#ensure the dir exists
mkDir(save_path)
#####################################################ANALYTIC SOLUTION
def analytic_gz(x,z,R,drho):
G=6.67300*10E-11
return G*2*np.pi*R*R*drho*(z/(x*x+z*z))
sol_angz=[]
sol_anx=[]
for x in range(int(-mx/20),int(mx/20),10):
sol_angz.append(analytic_gz(x,z,R,rho))
sol_anx.append(x+mx/2)
##############INVERSION
def gzpot(p, y, x, *args):
#rho, rhox, rhoy, R = p
rhox=args[0]/2.; rhoy=args[1]/2.
rho, R, z =p
#Domain related.
mx = args[0]; my = args[1];
#PDE related
G=6.67300*10E-11
#DOMAIN CONSTRUCTION
domain=ReadGmsh('data/example10m/example10m.msh',2)
domx=Solution(domain).getX()
mask=wherePositive(R-length(domx-rholoc))
rhoe=rho*mask
kro=kronecker(domain)
q=whereZero(domx[1]-my)+whereZero(domx[1])+whereZero(domx[0])+whereZero(domx[0]-mx)
#ESCRIPT PDE CONSTRUCTION
mypde=LinearPDE(domain)
mypde.setValue(A=kro,Y=4.*np.pi*G*rhoe,q=q,r=0.0)
mypde.setSymmetryOn()
sol=mypde.getSolution()
g_field=grad(sol) #The graviational accelleration g.
g_fieldz=g_field*[0,1] #The vertical component of the g field.
gz=length(g_fieldz) #The magnitude of the vertical component.
#MODEL SIZE SAMPLING
sol_escgz=[]
sol_escx=[]
for i in range(0,len(x)):
sol_escgz.append([x[i],rhoy+z])
sample=[] # array to hold values
rec=Locator(gz.getFunctionSpace(),sol_escgz) #location to record
psol=rec.getValue(gz)
err = np.sum((np.array(y) - np.array(psol))**2.)
print("Lsup= ",Lsup(np.array(psol)-np.array(sol_angz))/Lsup(np.array(psol)))
return err
#Initial Guess
#guess=[400,mx/4,my/4,50]
guess=[15.,20.]
#plsq = leastsq(gzpot, guess, args=(sol_angz, sol_anx, mx, my, ndx, ndy),maxfev=20)
#print plsq
objf=[]
x=np.arange(1,20)
y=np.arange(1,20)
z=np.arange(40,60)
fig=pl.figure(figsize=(5,5))
for p in x:
objf.append(gzpot([p,10.,50.],sol_angz,sol_anx, mx, my))
sp=fig.add_subplot(311)
sp.plot(x,objf)
sp.set_title("Variable RHO")
objf=[]
for R in y:
objf.append(gzpot([10.,R,50.],sol_angz,sol_anx, mx, my))
sp=fig.add_subplot(312)
sp.plot(y,objf)
sp.set_title("Variable Radius")
objf=[]
for D in z:
objf.append(gzpot([10.,10.,D],sol_angz,sol_anx, mx, my))
sp=fig.add_subplot(313)
sp.plot(z,objf)
sp.set_title("Variable Depth")
fig.savefig("ex10e_objf.pdf",dpi=150)
#ob=np.array(objf)
#X,Y=pl.meshgrid(x,y)
#fig=pl.figure()
#ax=Axes3D(fig)
#ax.plot_surface(X,Y,ob)
#pl.show()
|