File: ForwardGravity.tex

package info (click to toggle)
python-escript 5.6-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 144,196 kB
  • sloc: python: 592,057; cpp: 136,909; ansic: 18,675; javascript: 9,411; xml: 3,384; sh: 740; makefile: 203
file content (203 lines) | stat: -rw-r--r-- 10,119 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Copyright (c) 2003-2018 by The University of Queensland
% http://www.uq.edu.au
%
% Primary Business: Queensland, Australia
% Licensed under the Apache License, version 2.0
% http://www.apache.org/licenses/LICENSE-2.0
%
% Development until 2012 by Earth Systems Science Computational Center (ESSCC)
% Development 2012-2013 by School of Earth Sciences
% Development from 2014 by Centre for Geoscience Computing (GeoComp)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\section{Gravity Inversion}\label{sec:forward gravity}
For the gravity inversion we use the anomaly of the gravity acceleration~\index{gravity acceleration} of the Earth.
The controlling material parameter is the density~\index{density} $\rho$ of
the rock.
If the density field $\rho$ is known the gravitational potential $\psi$ is
given as the solution of the PDE
\begin{equation}\label{ref:GRAV:EQU:100}
-\psi_{,ii} = -4\pi G \cdot  \rho
\end{equation}
where $G=6.6730 \cdot 10^{-11}  \frac{m^3}{kg \cdot s^2}$ is the gravitational
constant.
The gravitational potential is set to zero at the top of the
domain $\Gamma_0$.
On all other faces the normal component of the gravity acceleration anomaly
$g_i$ is set to zero, i.e. $n_i \psi_{,i} = 0$ with outer normal field $n_i$.
The gravity force $g_i$ is given as the negative of the gradient of the gravity
potential $\psi$:
\begin{equation}\label{ref:GRAV:EQU:101}
 g_i = - \psi_{,i} 
\end{equation} 
From the gravitational potential we can calculate the gravity acceleration
anomaly via Equation~(\ref{ref:GRAV:EQU:101}) to obtain the defect to the
given data.
If $g^{(s)}_i$ is a measurement of the gravity acceleration anomaly for
survey $s$ and $\omega^{(s)}_i$ is a weighting factor the data defect
$J^{grav}(k)$ in the notation of Chapter~\ref{chapter:ref:inversion cost function} is given as
\begin{equation}\label{ref:GRAV:EQU:9}
J^{grav}(k) = \frac{1}{2}\sum_{s} \int_{\Omega} ( \omega^{(s)}_i \cdot (g_{i}- g^{(s)}_i) ) ^2 dx
\end{equation} 
Summation over $i$ is performed. 
The cost function kernel\index{cost function!kernel} is given as
\begin{equation}\label{ref:GRAV:EQU:10}
K^{grav}(\psi_{,i},k) = \frac{1}{2}\sum_{s} ( \omega^{(s)}_i \cdot (\psi_{,i}+ g^{(s)}_i) ) ^2
\end{equation} 
In practice the gravity acceleration $g^{(s)}$ is measured in vertical
direction $z$ with a standard error deviation $\sigma^{(s)}$ at certain
locations in the domain.
In this case one sets the weighting factors $\omega^{(s)}$ as
\begin{equation}\label{ref:GRAV:EQU:11}
\omega^{(s)}_i 
= \left\{
\begin{array}{lcl}
f \cdot  \frac{\delta_{iz}}{\sigma^{(s)}} & & \mbox{data are available} \\
& \mbox{ where } & \\
0 & & \mbox{ otherwise } \\
\end{array}
\right.
\end{equation} 
With the objective to control the 
gradient of the cost function 
the scaling factor $f$ is chosen in the way that
\begin{equation}\label{ref:GRAV:EQU:12}
\sum_{s} \int_{\Omega} ( \omega^{(s)}_i g^{(s)}_i ) \cdot ( \omega^{(s)}_j \frac{1}{L_j} ) \cdot 4\pi G L^2 \cdot \rho' \;  dx =\alpha
\end{equation} 
where $\alpha$ defines a scaling factor which is typically set to one and $L$ is defined by equation~(\ref{ref:EQU:REG:6b}). $\rho'$ is considering the 
derivative of the density with respect to the level set function. 


\subsection{Usage}

\begin{classdesc}{GravityModel}{domain, 
w, g,
\optional{, coordinates=\None}
\optional{, fixPotentialAtBottom=False},
\optional{, tol=1e-8}
}
opens a gravity forward model over the \Domain \member{domain} with 
weighting factors \member{w} ($=\omega^{(s)}$) and measured gravity acceleration anomalies \member{g} ($=g^{(s)}$).
The weighting factors and the  measured gravity acceleration anomalies must be vectors
where components refer to the components 
$(x_0,x_1,x_2)$ for the Cartesian coordinate system 
and to $(\phi, \lambda, h)$ for the geodetic coordinate system. 
If \member{reference} defines the reference coordinate system to be used, see Chapter~\ref{Chp:ref:coordinates}.
\member{tol} set the tolerance for the solution of the PDE~(\ref{ref:GRAV:EQU:100}).
If \member{fixPotentialAtBottom} is set to  \True, the gravitational potential 
at the bottom is set to zero in addition to the potential on the top. 
\member{coordinates} set the reference coordinate system to be used. By the default the 
Cartesian coordinate system is used.
\end{classdesc}

\begin{methoddesc}[GravityModel]{rescaleWeights}{
        \optional{scale=1.}
 \optional{rho_scale=1.}}
rescale the weighting factors such condition~(\ref{ref:GRAV:EQU:12}) holds where 
\member{scale} sets the scale $\alpha$
and \member{rho_scale} sets $\rho'$. This method should be called before any inversion is started
in order to make sure that all components of the cost function are appropriately scaled.
\end{methoddesc}


\subsection{Gradient Calculation}
This section briefly explains how the gradient
$\frac{\partial J^{grav}}{\partial \rho}$ of the cost function $J^{grav}$ with
respect to the density $\rho$ is calculated. We follow the concept as outlined in section~\ref{chapter:ref:inversion cost function:gradient}.
The gravity potential $\psi$ from PDE~(\ref{ref:GRAV:EQU:100}) is solved in
weak form:
\begin{equation}\label{ref:GRAV:EQU:201}
\int_{\Omega} q_{,i} \psi_{,i} \; dx  = - \int_{\Omega}  4\pi G \cdot q \rho\; dx 
\end{equation} 
for all $q$ with $q=0$ on $\Gamma_0$.
In the following we set $\Psi[\cdot]=\psi$ for a given density $\cdot$ as
solution of the variational problem~(\ref{ref:GRAV:EQU:201}).
If $\Gamma_{\rho}$ denotes the region of the domain where the density is known
and for a given direction $p$ with $p=0$ on $\Gamma_{\rho}$ one has
\begin{equation}\label{ref:GRAV:EQU:201aa}
\int_{\Omega}   \frac{\partial J^{grav}}{\partial \rho} \cdot p \; dx  =  \int_{\Omega}  
\sum_{s} (\omega^{(s)}_j \cdot 
(g^{(s)}_j-g_{j}) ) \cdot ( \omega^{(s)}_i \Psi[p]_{,i})  \; dx  
\end{equation} 
with 
\begin{equation}\label{ref:GRAV:EQU:202c}
Y_i[\psi]=  \sum_{s} (\omega^{(s)}_j \cdot 
(g^{(s)}_j-g_{j}) ) \cdot  \omega^{(s)}_i
\end{equation} 
This is written as 
\begin{equation}\label{ref:GRAV:EQU:202cc}
\int_{\Omega}   \frac{\partial J^{grav}}{\partial \rho} \cdot p \;  dx  = \int_{\Omega}  
Y_i[\psi] \Psi[p]_{,i} \; dx  
\end{equation} 
We then set $Y^*[\psi]$ as the solution of the equation 
\begin{equation}\label{ref:GRAV:EQU:202d}
\int_{\Omega} r_{,i} Y^*[\psi]_{,i} \; dx  =  \int_{\Omega} r_{,i} ,Y_i[\psi]  \; dx  \mbox{ for all } p \mbox{ with } r=0 \mbox{ on } \Gamma_{top}
\end{equation} 
with $Y^*[\psi]=0$ on $\Gamma_0$. With $r=\Psi[p]$ we get
\begin{equation}\label{ref:GRAV:EQU:202dd}
\int_{\Omega} \Psi[p]_{,i} Y^*[\psi]_{,i} \; dx  =  \int_{\Omega} \Psi[p]_{,i} ,Y_i[\psi]  \; dx
\end{equation} 
and from Equation~(\ref{ref:GRAV:EQU:201}) with $q=Y^*[\psi]$ we get
\begin{equation}\label{ref:GRAV:EQU:20e}
\int_{\Omega} Y^*[\psi]_{,i}  \Psi[p]_{,i} \; dx  = - \int_{\Omega}  4\pi G \cdot Y^*[\psi] \cdot  p\;  dx  
\end{equation}
which leads to 
\begin{equation}\label{ref:GRAV:EQU:20ee}
\int_{\Omega} \Psi[p]_{,i} ,Y_i[\psi]  \; dx  = - \int_{\Omega}  4\pi G \cdot Y^*[\psi] \cdot  p \; dx  
\end{equation}
and finally
\begin{equation}\label{ref:GRAV:EQU:201a}
\int_{\Omega}   \frac{\partial J^{grav}}{\partial \rho} \cdot p \;  dx  = - \int_{\Omega}  
4\pi G \cdot Y^*[\psi] \cdot  p \; dx  
\end{equation} 
or 
\begin{equation}\label{ref:GRAV:EQU:201b}
\frac{\partial J^{grav}}{\partial \rho}  =- 4\pi G \cdot Y^*[\psi]
\end{equation} 

\subsection{Geodetic Coordinates }
For geodetic coordinates $(\phi, \lambda, h)$, see Chapter~\ref{Chp:ref:coordinates}, the solution process needs to be slightly modified.
Observations are recorded along the geodetic coordinates axes $\alpha$ rather than the Cartesian axes $i$. In fact we
have in equation~\ref{ref:GRAV:EQU:9}:
\begin{equation}\label{ref:GRAV:EQU:300}
\omega^{(s)}_i \cdot (g_{i}- g^{(s)}_i) = \omega^{(s)}_{\alpha} \cdot (g_{{\alpha}}- g^{(s)}_{\alpha}) 
\end{equation} 
where now $g^{(s)}_{\alpha}$ are the observational data with weighting factors $\omega^{(s)}_{\alpha}$.  Using the 
fact that $g_{{\alpha}} = - d_{\alpha \alpha} \psi_{,\alpha}$ 
equation~\ref{ref:GRAV:EQU:10} translates to 
\begin{equation}\label{ref:GRAV:EQU:301}
J^{grav}(k) = \frac{1}{2}\sum_{s} \int_{\widehat{\Omega}} 
( \omega^{(s)}_{\alpha} \cdot (d_{\alpha \alpha}  \psi_{,\alpha} + g^{(s)}_{\alpha} ) ) ^2 \; v \; d\widehat{x}
\end{equation} 
where $\widehat{\Omega}$ and $d\widehat{x}$ refer to integration over the geodetic coordinates axes. This can be rearranged to 
\begin{equation}\label{ref:GRAV:EQU:301bb}
J^{grav}(k) = \frac{1}{2}\sum_{s} \int_{\widehat{\Omega}} 
(  \omega^{(s)}_{\alpha} v^{\frac{1}{2}} d_{\alpha \alpha} \cdot ( \psi_{,\alpha} + \frac{1}{d_{\alpha \alpha}} g^{(s)}_{\alpha} ) ) ^2 \; d\widehat{x}
=\frac{1}{2}\sum_{s} \int_{\widehat{\Omega}} 
(  {\widehat{\omega}}^{(s)}_{\alpha}\cdot ( \psi_{,\alpha} + \widehat{g}^{(s)}_{\alpha} ) ) ^2 \; d\widehat{x}
\end{equation} 
with 
\begin{equation}\label{ref:GRAV:EQU:301b}
 \widehat{\omega}^{(s)}_{\alpha} =\omega^{(s)}_{\alpha} v^{\frac{1}{2}} d_{\alpha \alpha} \mbox{ and }
\widehat{ g}^{(s)}_{\alpha}=
\frac{1}{d_{\alpha \alpha}} g^{(s)}_{\alpha}
\end{equation} 
which means one can apply the Cartesian formulation to the geodetic coordinates using modified data. 
The gravity potential is calculated from 
\begin{equation}\label{ref:GRAV:EQU:302}
\int_{\widehat{\Omega}} v \; d_{\alpha \alpha}^2 q_{,\alpha} \psi_{,\alpha} \;  d\widehat{x}  
= - \int_{\widehat{\Omega}}  (4\pi G v) \cdot q \rho\;  d\widehat{x} 
\end{equation} 
see equation~\ref{ref:GRAV:EQU:201}, and the adjoint function $Y^*[\psi]$ for $Y_{\alpha}[\psi]$ is given from
\begin{equation}\label{ref:GRAV:EQU:303}
\int_{\widehat{\Omega}} v  \; d_{\alpha \alpha}^2 q_{,\alpha} Y^*[\psi]_{,\alpha } \;d\widehat{x}  =
  \int_{\widehat{\Omega}} q_{,\alpha} Y_{\alpha}[\psi]  \; d\widehat{x} 
\end{equation} 
and finally 
\begin{equation}\label{ref:GRAV:EQU:310}
 \frac{\partial J^{grav}}{\partial \rho}  = - 
(4\pi G v) \cdot Y^*[\psi]
\end{equation}