1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Copyright (c) 2003-2018 by The University of Queensland
% http://www.uq.edu.au
%
% Primary Business: Queensland, Australia
% Licensed under the Apache License, version 2.0
% http://www.apache.org/licenses/LICENSE-2.0
%
% Development until 2012 by Earth Systems Science Computational Center (ESSCC)
% Development 2012-2013 by School of Earth Sciences
% Development from 2014 by Centre for Geoscience Computing (GeoComp)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Gravity Inversion}\label{sec:forward gravity}
For the gravity inversion we use the anomaly of the gravity acceleration~\index{gravity acceleration} of the Earth.
The controlling material parameter is the density~\index{density} $\rho$ of
the rock.
If the density field $\rho$ is known the gravitational potential $\psi$ is
given as the solution of the PDE
\begin{equation}\label{ref:GRAV:EQU:100}
-\psi_{,ii} = -4\pi G \cdot \rho
\end{equation}
where $G=6.6730 \cdot 10^{-11} \frac{m^3}{kg \cdot s^2}$ is the gravitational
constant.
The gravitational potential is set to zero at the top of the
domain $\Gamma_0$.
On all other faces the normal component of the gravity acceleration anomaly
$g_i$ is set to zero, i.e. $n_i \psi_{,i} = 0$ with outer normal field $n_i$.
The gravity force $g_i$ is given as the negative of the gradient of the gravity
potential $\psi$:
\begin{equation}\label{ref:GRAV:EQU:101}
g_i = - \psi_{,i}
\end{equation}
From the gravitational potential we can calculate the gravity acceleration
anomaly via Equation~(\ref{ref:GRAV:EQU:101}) to obtain the defect to the
given data.
If $g^{(s)}_i$ is a measurement of the gravity acceleration anomaly for
survey $s$ and $\omega^{(s)}_i$ is a weighting factor the data defect
$J^{grav}(k)$ in the notation of Chapter~\ref{chapter:ref:inversion cost function} is given as
\begin{equation}\label{ref:GRAV:EQU:9}
J^{grav}(k) = \frac{1}{2}\sum_{s} \int_{\Omega} ( \omega^{(s)}_i \cdot (g_{i}- g^{(s)}_i) ) ^2 dx
\end{equation}
Summation over $i$ is performed.
The cost function kernel\index{cost function!kernel} is given as
\begin{equation}\label{ref:GRAV:EQU:10}
K^{grav}(\psi_{,i},k) = \frac{1}{2}\sum_{s} ( \omega^{(s)}_i \cdot (\psi_{,i}+ g^{(s)}_i) ) ^2
\end{equation}
In practice the gravity acceleration $g^{(s)}$ is measured in vertical
direction $z$ with a standard error deviation $\sigma^{(s)}$ at certain
locations in the domain.
In this case one sets the weighting factors $\omega^{(s)}$ as
\begin{equation}\label{ref:GRAV:EQU:11}
\omega^{(s)}_i
= \left\{
\begin{array}{lcl}
f \cdot \frac{\delta_{iz}}{\sigma^{(s)}} & & \mbox{data are available} \\
& \mbox{ where } & \\
0 & & \mbox{ otherwise } \\
\end{array}
\right.
\end{equation}
With the objective to control the
gradient of the cost function
the scaling factor $f$ is chosen in the way that
\begin{equation}\label{ref:GRAV:EQU:12}
\sum_{s} \int_{\Omega} ( \omega^{(s)}_i g^{(s)}_i ) \cdot ( \omega^{(s)}_j \frac{1}{L_j} ) \cdot 4\pi G L^2 \cdot \rho' \; dx =\alpha
\end{equation}
where $\alpha$ defines a scaling factor which is typically set to one and $L$ is defined by equation~(\ref{ref:EQU:REG:6b}). $\rho'$ is considering the
derivative of the density with respect to the level set function.
\subsection{Usage}
\begin{classdesc}{GravityModel}{domain,
w, g,
\optional{, coordinates=\None}
\optional{, fixPotentialAtBottom=False},
\optional{, tol=1e-8}
}
opens a gravity forward model over the \Domain \member{domain} with
weighting factors \member{w} ($=\omega^{(s)}$) and measured gravity acceleration anomalies \member{g} ($=g^{(s)}$).
The weighting factors and the measured gravity acceleration anomalies must be vectors
where components refer to the components
$(x_0,x_1,x_2)$ for the Cartesian coordinate system
and to $(\phi, \lambda, h)$ for the geodetic coordinate system.
If \member{reference} defines the reference coordinate system to be used, see Chapter~\ref{Chp:ref:coordinates}.
\member{tol} set the tolerance for the solution of the PDE~(\ref{ref:GRAV:EQU:100}).
If \member{fixPotentialAtBottom} is set to \True, the gravitational potential
at the bottom is set to zero in addition to the potential on the top.
\member{coordinates} set the reference coordinate system to be used. By the default the
Cartesian coordinate system is used.
\end{classdesc}
\begin{methoddesc}[GravityModel]{rescaleWeights}{
\optional{scale=1.}
\optional{rho_scale=1.}}
rescale the weighting factors such condition~(\ref{ref:GRAV:EQU:12}) holds where
\member{scale} sets the scale $\alpha$
and \member{rho_scale} sets $\rho'$. This method should be called before any inversion is started
in order to make sure that all components of the cost function are appropriately scaled.
\end{methoddesc}
\subsection{Gradient Calculation}
This section briefly explains how the gradient
$\frac{\partial J^{grav}}{\partial \rho}$ of the cost function $J^{grav}$ with
respect to the density $\rho$ is calculated. We follow the concept as outlined in section~\ref{chapter:ref:inversion cost function:gradient}.
The gravity potential $\psi$ from PDE~(\ref{ref:GRAV:EQU:100}) is solved in
weak form:
\begin{equation}\label{ref:GRAV:EQU:201}
\int_{\Omega} q_{,i} \psi_{,i} \; dx = - \int_{\Omega} 4\pi G \cdot q \rho\; dx
\end{equation}
for all $q$ with $q=0$ on $\Gamma_0$.
In the following we set $\Psi[\cdot]=\psi$ for a given density $\cdot$ as
solution of the variational problem~(\ref{ref:GRAV:EQU:201}).
If $\Gamma_{\rho}$ denotes the region of the domain where the density is known
and for a given direction $p$ with $p=0$ on $\Gamma_{\rho}$ one has
\begin{equation}\label{ref:GRAV:EQU:201aa}
\int_{\Omega} \frac{\partial J^{grav}}{\partial \rho} \cdot p \; dx = \int_{\Omega}
\sum_{s} (\omega^{(s)}_j \cdot
(g^{(s)}_j-g_{j}) ) \cdot ( \omega^{(s)}_i \Psi[p]_{,i}) \; dx
\end{equation}
with
\begin{equation}\label{ref:GRAV:EQU:202c}
Y_i[\psi]= \sum_{s} (\omega^{(s)}_j \cdot
(g^{(s)}_j-g_{j}) ) \cdot \omega^{(s)}_i
\end{equation}
This is written as
\begin{equation}\label{ref:GRAV:EQU:202cc}
\int_{\Omega} \frac{\partial J^{grav}}{\partial \rho} \cdot p \; dx = \int_{\Omega}
Y_i[\psi] \Psi[p]_{,i} \; dx
\end{equation}
We then set $Y^*[\psi]$ as the solution of the equation
\begin{equation}\label{ref:GRAV:EQU:202d}
\int_{\Omega} r_{,i} Y^*[\psi]_{,i} \; dx = \int_{\Omega} r_{,i} ,Y_i[\psi] \; dx \mbox{ for all } p \mbox{ with } r=0 \mbox{ on } \Gamma_{top}
\end{equation}
with $Y^*[\psi]=0$ on $\Gamma_0$. With $r=\Psi[p]$ we get
\begin{equation}\label{ref:GRAV:EQU:202dd}
\int_{\Omega} \Psi[p]_{,i} Y^*[\psi]_{,i} \; dx = \int_{\Omega} \Psi[p]_{,i} ,Y_i[\psi] \; dx
\end{equation}
and from Equation~(\ref{ref:GRAV:EQU:201}) with $q=Y^*[\psi]$ we get
\begin{equation}\label{ref:GRAV:EQU:20e}
\int_{\Omega} Y^*[\psi]_{,i} \Psi[p]_{,i} \; dx = - \int_{\Omega} 4\pi G \cdot Y^*[\psi] \cdot p\; dx
\end{equation}
which leads to
\begin{equation}\label{ref:GRAV:EQU:20ee}
\int_{\Omega} \Psi[p]_{,i} ,Y_i[\psi] \; dx = - \int_{\Omega} 4\pi G \cdot Y^*[\psi] \cdot p \; dx
\end{equation}
and finally
\begin{equation}\label{ref:GRAV:EQU:201a}
\int_{\Omega} \frac{\partial J^{grav}}{\partial \rho} \cdot p \; dx = - \int_{\Omega}
4\pi G \cdot Y^*[\psi] \cdot p \; dx
\end{equation}
or
\begin{equation}\label{ref:GRAV:EQU:201b}
\frac{\partial J^{grav}}{\partial \rho} =- 4\pi G \cdot Y^*[\psi]
\end{equation}
\subsection{Geodetic Coordinates }
For geodetic coordinates $(\phi, \lambda, h)$, see Chapter~\ref{Chp:ref:coordinates}, the solution process needs to be slightly modified.
Observations are recorded along the geodetic coordinates axes $\alpha$ rather than the Cartesian axes $i$. In fact we
have in equation~\ref{ref:GRAV:EQU:9}:
\begin{equation}\label{ref:GRAV:EQU:300}
\omega^{(s)}_i \cdot (g_{i}- g^{(s)}_i) = \omega^{(s)}_{\alpha} \cdot (g_{{\alpha}}- g^{(s)}_{\alpha})
\end{equation}
where now $g^{(s)}_{\alpha}$ are the observational data with weighting factors $\omega^{(s)}_{\alpha}$. Using the
fact that $g_{{\alpha}} = - d_{\alpha \alpha} \psi_{,\alpha}$
equation~\ref{ref:GRAV:EQU:10} translates to
\begin{equation}\label{ref:GRAV:EQU:301}
J^{grav}(k) = \frac{1}{2}\sum_{s} \int_{\widehat{\Omega}}
( \omega^{(s)}_{\alpha} \cdot (d_{\alpha \alpha} \psi_{,\alpha} + g^{(s)}_{\alpha} ) ) ^2 \; v \; d\widehat{x}
\end{equation}
where $\widehat{\Omega}$ and $d\widehat{x}$ refer to integration over the geodetic coordinates axes. This can be rearranged to
\begin{equation}\label{ref:GRAV:EQU:301bb}
J^{grav}(k) = \frac{1}{2}\sum_{s} \int_{\widehat{\Omega}}
( \omega^{(s)}_{\alpha} v^{\frac{1}{2}} d_{\alpha \alpha} \cdot ( \psi_{,\alpha} + \frac{1}{d_{\alpha \alpha}} g^{(s)}_{\alpha} ) ) ^2 \; d\widehat{x}
=\frac{1}{2}\sum_{s} \int_{\widehat{\Omega}}
( {\widehat{\omega}}^{(s)}_{\alpha}\cdot ( \psi_{,\alpha} + \widehat{g}^{(s)}_{\alpha} ) ) ^2 \; d\widehat{x}
\end{equation}
with
\begin{equation}\label{ref:GRAV:EQU:301b}
\widehat{\omega}^{(s)}_{\alpha} =\omega^{(s)}_{\alpha} v^{\frac{1}{2}} d_{\alpha \alpha} \mbox{ and }
\widehat{ g}^{(s)}_{\alpha}=
\frac{1}{d_{\alpha \alpha}} g^{(s)}_{\alpha}
\end{equation}
which means one can apply the Cartesian formulation to the geodetic coordinates using modified data.
The gravity potential is calculated from
\begin{equation}\label{ref:GRAV:EQU:302}
\int_{\widehat{\Omega}} v \; d_{\alpha \alpha}^2 q_{,\alpha} \psi_{,\alpha} \; d\widehat{x}
= - \int_{\widehat{\Omega}} (4\pi G v) \cdot q \rho\; d\widehat{x}
\end{equation}
see equation~\ref{ref:GRAV:EQU:201}, and the adjoint function $Y^*[\psi]$ for $Y_{\alpha}[\psi]$ is given from
\begin{equation}\label{ref:GRAV:EQU:303}
\int_{\widehat{\Omega}} v \; d_{\alpha \alpha}^2 q_{,\alpha} Y^*[\psi]_{,\alpha } \;d\widehat{x} =
\int_{\widehat{\Omega}} q_{,\alpha} Y_{\alpha}[\psi] \; d\widehat{x}
\end{equation}
and finally
\begin{equation}\label{ref:GRAV:EQU:310}
\frac{\partial J^{grav}}{\partial \rho} = -
(4\pi G v) \cdot Y^*[\psi]
\end{equation}
|