File: ForwardMagnetic.tex

package info (click to toggle)
python-escript 5.6-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 144,196 kB
  • sloc: python: 592,057; cpp: 136,909; ansic: 18,675; javascript: 9,411; xml: 3,384; sh: 740; makefile: 203
file content (241 lines) | stat: -rw-r--r-- 11,837 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Copyright (c) 2003-2018 by The University of Queensland
% http://www.uq.edu.au
%
% Primary Business: Queensland, Australia
% Licensed under the Apache License, version 2.0
% http://www.apache.org/licenses/LICENSE-2.0
%
% Development until 2012 by Earth Systems Science Computational Center (ESSCC)
% Development 2012-2013 by School of Earth Sciences
% Development from 2014 by Centre for Geoscience Computing (GeoComp)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


\section{Linear Magnetic Inversion}\label{sec:forward magnetic}
For the magnetic inversion we use the anomaly of the magnetic flux
density~\index{magnetic flux density} of the Earth.
The controlling material parameter is the susceptibility~\index{susceptibility}
$k$ of the rock.
With magnetization $M$ and inducing magnetic field anomaly $H$, the magnetic
flux density anomaly $B$ is given as
\begin{equation}\label{ref:MAG:EQU:1}
B_i = \mu_0 \cdot ( H_i  + M_i )
\end{equation}
where $\mu_0 = 4 \pi \cdot 10^{-7} \frac{Vs}{Am}$.
In this forward model we make the simplifying assumption that the magnetization
is proportional to the known geomagnetic flux density $B^b$:
\begin{equation}\label{ref:MAG:EQU:4}
\mu_0  \cdot M_i = k \cdot B^b_i \;. 
\end{equation}
Values for the magnetic flux density can be obtained by the International
Geomagnetic Reference Field (IGRF)~\cite{IGRF}
(or the Australian Geomagnetic Reference Field (AGRF)~\cite{AGRF}).
In most cases it is reasonable to assume that that the background field is
constant across the domain.

The magnetic field anomaly $H$ can be represented by the gradient of a
magnetic scalar potential\index{scalar potential!magnetic} $\psi$.
We use the form 
\begin{equation}\label{ref:MAG:EQU:6}
\mu_0  \cdot H_i = - \psi_{,i}
\end{equation}
With this notation one gets from Equations~(\ref{ref:MAG:EQU:1}) and~(\ref{ref:MAG:EQU:4}):
\begin{equation}\label{ref:MAG:EQU:7}
B_i = - \psi_{,i}  + k \cdot B^b_i
\end{equation}
As the $B$ magnetic flux density anomaly is divergence free ($B_{i,i}=0$) we obtain the PDE
\begin{equation}\label{ref:MAG:EQU:8}
- \psi_{,ii} = - (k B^r_i)_{,i} 
\end{equation} 
with $B^r_i=B^b_i$ which needs to be solved for a given susceptibility $k$.
The magnetic scalar potential is set to zero at the top of the domain
$\Gamma_{0}$.
On all other faces the normal component of the magnetic flux density anomaly
$B_i$ is set to zero, i.e. $n_i \psi_{,i} = k \cdot n_i  B^b_i$ with outer
normal field $n_i$.

From the magnetic scalar potential we can calculate the magnetic flux density
anomaly via Equation~(\ref{ref:MAG:EQU:8}) to calculate the defect to the given
data.
If $B^{(s)}_i$ is a measurement of the magnetic flux density anomaly for
survey $s$ and $\omega^{(s)}_i$ is a weighting factor the data defect
$J^{mag}(k)$ in the notation of Chapter~\ref{chapter:ref:inversion cost function} is given as
\begin{equation}\label{ref:MAG:EQU:9}
J^{mag}(k) = \frac{1}{2}\sum_{s} \int_{\Omega} ( \omega^{(s)}_i \cdot (B_{i}- B^{(s)}_i) ) ^2 dx
\end{equation} 
Summation over $i$ is performed.
The cost function kernel\index{cost function!kernel} is given as
\begin{equation}\label{ref:MAG:EQU:10}
K^{mag}(\psi_{,i},k) = \frac{1}{2}\sum_{s} ( \omega^{(s)}_i \cdot (k \cdot B^b_i - \psi_{,i} - B^{(s)}_i) ) ^2
\end{equation} 
Notice that if magnetic flux density is measured in air one can ignore the
$k\cdot B^b_i$ as the susceptibility is zero.

In practice the magnetic flux density $b^{(s)}$ is measured along a certain
direction $d^{(s)}_i$ with a standard error deviation $\sigma^{(s)}$ at
certain locations in the domain.
In this case one sets $B^{(s)}_i=b^{(s)} \cdot d^{(s)}_i$ and the weighting
factors $\omega^{(s)}$ as
\begin{equation}\label{ref:MAG:EQU:11}
\omega^{(s)}_i 
= \left\{
\begin{array}{lcl}
f \cdot  \frac{d^{(s)}_i}{\sigma^{(s)}} & & \mbox{data are available} \\
& \mbox{ where } & \\
0 & & \mbox{ otherwise } \\
\end{array}
\right.
\end{equation} 
where it is assumed that $d^{(s)}_i \cdot d^{(s)}_i =1$. With the objective to control the 
gradient of the cost function the scaling factor $f$ is chosen in the way that 
\begin{equation}\label{ref:MAG:EQU:12}
\sum_{s} \int_{\Omega} ( \omega^{(s)}_i B^{(s)}_i ) 
 \cdot ( \omega^{(s)}_j \frac{1}{L_j} ) \cdot L^2 \cdot
( B^b_n \frac{1}{L_n} )
 \cdot k' \;
 dx =\alpha
\end{equation} 
where $\alpha$ defines a scaling factor which is typically set to one and $L$ is defined by equation~(\ref{ref:EQU:REG:6b}).
$k'$ is considering the 
derivative of the density with respect to the level set function. 


\subsection{Usage}

\begin{classdesc}{MagneticModel}{domain, w, B, background_field,
        \optional{, coordinates=\None}
        \optional{, fixPotentialAtBottom=False},
        \optional{, tol=1e-8},
}
opens a magnetic forward model over the \Domain \member{domain} with 
weighting factors \member{w} ($=\omega^{(s)}$) and measured magnetic flux
density anomalies \member{B} ($=B^{(s)}$).
The weighting factors and the  measured magnetic flux density anomalies must be vectors.
\member{background_field} defines the background magnetic flux density $B^b$
as a vector with north, east and vertical components. 
\member{tol} sets the tolerance for the solution of the PDE~(\ref{ref:MAG:EQU:8}).
If \member{fixPotentialAtBottom} is set to  \True, the magnetic potential 
at the bottom is set to zero in addition to the potential on the top. 
\member{coordinates} set the reference coordinate system to be used. By the default the 
Cartesian coordinate system is used.
\end{classdesc}

\begin{methoddesc}[MagneticModel]{rescaleWeights}{
        \optional{scale=1.}
 \optional{k_scale=1.}}
rescale the weighting factors such condition~(\ref{ref:MAG:EQU:12}) holds where 
\member{scale} sets the scale $\alpha$
and \member{k_scale} sets $k'$. This method should be called before any inversion is started
in order to make sure that all components of the cost function are appropriately scaled.
\end{methoddesc}


\subsection{Gradient Calculation}
This section briefly explains how the gradient
$\frac{\partial J^{mag}}{\partial k}$ of the cost function $J^{mag}$ with
respect to the susceptibility $k$ is calculated.  We follow the concept as outlined in section~\ref{chapter:ref:inversion cost function:gradient}.

The magnetic potential $\psi$ from PDE~(\ref{ref:MAG:EQU:8}) is solved in weak form:
\begin{equation}\label{ref:MAG:EQU:201}
\int_{\Omega} q_{,i} \psi_{,i} \; dx  = \int_{\Omega}  k \cdot q_{,i}  B^r_i \; dx 
\end{equation} 
for all $q$ with $q=0$ on $\Gamma_{0}$.
In the following we set $\Psi[k]=\psi$ for a given susceptibility $k$ as
solution of the variational problem~(\ref{ref:MAG:EQU:201}).
If $\Gamma_{k}$ denotes the region of the domain where the susceptibility is
known and for a given direction $p$ with $p=0$ on $\Gamma_{k}$ one has
\begin{equation}\label{ref:MAG:EQU:201aa}
\int_{\Omega}   \frac{\partial J^{mag}}{\partial k} \cdot p \; dx  = \int_{\Omega}  
\sum_{s} (\omega^{(s)}_j 
( B^{(s)}_j-B_{j}))  \cdot ( \omega^{(s)}_i ( \Psi[p]_{,i} - p  \cdot B^b_i  ) ) \; dx  
\end{equation} 
With
\begin{equation}\label{ref:MAG:EQU:202c}
Y_i[\psi]=   \sum_{s} (\omega^{(s)}_j 
(B^{(s)}_j - B_{j}) )  \cdot \omega^{(s)}_i  
\end{equation} 
this is written as 
\begin{equation}\label{ref:MAG:EQU:202cc}
\int_{\Omega}   \frac{\partial J^{mag}}{\partial k} \cdot p \;  dx  = \int_{\Omega}  
Y_i[\psi] \Psi[p]_{,i} - p \cdot Y_i[\psi]B^b_i   \; dx  
\end{equation} 
We then set adjoint function $Y^*[\psi]$ as the solution of the equation 
\begin{equation}\label{ref:MAG:EQU:202d}
\int_{\Omega} r_{,i} Y^*[\psi]_{,i} \; dx  =  \int_{\Omega} r_{,i} Y_i[\psi]  \; dx  \mbox{ for all } r \mbox{ with } r=0 \mbox{ on } \Gamma_{0}
\end{equation} 
with $Y^*[\psi]=0$ on $\Gamma_{0}$. With $r=\Psi[p]$ we get
\begin{equation}\label{ref:MAG:EQU:202dd}
\int_{\Omega} \Psi[p]_{,i} Y^*[\psi]_{,i} \; dx  =  \int_{\Omega} \Psi[p]_{,i} Y_i[\psi]  \; dx
\end{equation} 
and from Equation~(\ref{ref:MAG:EQU:201}) with $q=Y^*[\psi]$ we get
\begin{equation}\label{ref:MAG:EQU:20e}
\int_{\Omega} Y^*[\psi]_{,i}  \Psi[p]_{,i} \; dx  = \int_{\Omega}  p \cdot Y^*[\psi]_{,i}  B^r_i \; dx  
\end{equation}
which leads to 
\begin{equation}\label{ref:MAG:EQU:20ee}
\int_{\Omega} \Psi[p]_{,i} ,Y_i[\psi]  \; dx  = \int_{\Omega}  p \cdot Y^*[\psi]_{,i}  B^r_i \; dx  
\end{equation}
and finally
\begin{equation}\label{ref:MAG:EQU:201a}
\int_{\Omega}   \frac{\partial J^{mag}}{\partial k} \cdot p \;  dx  = \int_{\Omega}  
p \cdot (Y^*[\psi]_{,i}  B^r_i - Y_i[\psi] B^b_i) \; dx  
\end{equation} 
or 
\begin{equation}\label{ref:MAG:EQU:201b}
\frac{\partial J^{mag}}{\partial k} = Y^*[\psi]_{,i}  B^r_i - Y_i[\psi] B^b_i
\end{equation}

\subsection{Geodetic Coordinates}
For geodetic coordinates $(\phi, \lambda, h)$, see Chapter~\ref{Chp:ref:coordinates}, the solution process needs to be slightly modified.
Observations are recorded along the geodetic coordinates axes $\alpha$ rather than the Cartesian axes $i$. In fact we
have in equation~\ref{ref:MAG:EQU:9}:
\begin{equation}\label{ref:MAG:EQU:300}
\omega^{(s)}_i \cdot (B_{i}- B^{(s)}_i) = \omega^{(s)}_{\alpha} \cdot (B_{{\alpha}}- B^{(s)}_{\alpha}) 
\end{equation} 
where now $B^{(s)}_{\alpha}$ are the observational data with weighting factors $\omega^{(s)}_{\alpha}$.  Using the 
fact that $B_{{\alpha}} = k \cdot B^b_{{\alpha}} -d_{\alpha \alpha} \psi_{,\alpha}$ 
equation~\ref{ref:MAG:EQU:10} translates to 
\begin{equation}\label{ref:MAG:EQU:301}
J^{mag}(k) = \frac{1}{2}\sum_{s} \int_{\widehat{\Omega}} 
( \omega^{(s)}_{\alpha} \cdot (d_{\alpha \alpha}  \psi_{,\alpha} - k \cdot B^b_{{\alpha}}  + B^{(s)}_{\alpha} ) ) ^2 \; v \; d\widehat{x}
\end{equation} 
where $\widehat{\Omega}$ and $d\widehat{x}$ refer to integration over the geodetic coordinates axes. This can be rearranged to 
\begin{equation}\label{ref:MAG:EQU:301bb}
J^{mag}(k) = \frac{1}{2}\sum_{s} \int_{\widehat{\Omega}} 
(  \omega^{(s)}_{\alpha} v^{\frac{1}{2}} d_{\alpha \alpha} \cdot ( 
 \psi_{,\alpha} -  k \cdot v_{\alpha \alpha} B^b_{{\alpha}} + v_{\alpha \alpha} B^{(s)}_{\alpha} ) ) ^2 \; d\widehat{x}
=\frac{1}{2}\sum_{s} \int_{\widehat{\Omega}} 
(  {\widehat{\omega}}^{(s)}_{\alpha}\cdot ( \psi_{,\alpha} -  k \cdot \widehat{B}^b_{{\alpha}}+  \widehat{B}^{(s)}_{\alpha} ) ) ^2 \; d\widehat{x}
\end{equation} 
with 
\begin{equation}\label{ref:MAG:EQU:301b}
 \widehat{\omega}^{(s)}_{\alpha} = \omega^{(s)}_{\alpha} v^{\frac{1}{2}} d_{\alpha \alpha} \mbox{ , }
\widehat{B}^{(s)}_{\alpha}=
\frac{1}{d_{\alpha \alpha}} B^{(s)}_{\alpha}  \mbox{ and } \widehat{B}^b_{{\alpha}} = \frac{1}{d_{\alpha \alpha}}  B^b_{{\alpha}} 
\end{equation} 
which means one can apply the Cartesian formulation to the geodetic coordinates using modified data. 


The magnetic potential is calculated from 
\begin{equation}\label{ref:MAG:EQU:302}
\int_{\widehat{\Omega}} v \; d_{\alpha \alpha}^2 q_{,\alpha} \psi_{,\alpha} \;  d\widehat{x}  
=  \int_{\widehat{\Omega}} v \; d_{\alpha \alpha} k \cdot q_{,\alpha}  B^r_{\alpha} \; d\widehat{x}   
=  \int_{\widehat{\Omega}}  k \cdot q_{,\alpha}  \widehat{B}^r_{\alpha} \; d\widehat{x}   
\end{equation} 
with 
\begin{equation}\label{ref:MAG:EQU:302b}
\widehat{B}^r_{\alpha}  =v \; d_{\alpha \alpha} \widehat{B}^r_{\alpha}
\end{equation} 
see equation~\ref{ref:MAG:EQU:201}, and the adjoint function $Y^*[\psi]$ for $Y_{\alpha}[\psi]$ is given from
\begin{equation}\label{ref:MAG:EQU:303}
\int_{\widehat{\Omega}} v \; d_{\alpha \alpha}^2 q_{,\alpha} Y^*[\psi]_{,\alpha } \;d\widehat{x}  =
\int_{\widehat{\Omega}} r_{,{\alpha}} ,Y_{\alpha}[\psi]  \;d\widehat{x}
\end{equation} 
and finally 
\begin{equation}\label{ref:MAG:EQU:310}
\frac{\partial J^{mag}}{\partial k} = Y^*[\psi]_{,{\alpha}}  B^r_{\alpha} - Y_i[\psi] B^b_{\alpha}
\end{equation}