1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Copyright (c) 2003-2018 by The University of Queensland
% http://www.uq.edu.au
%
% Primary Business: Queensland, Australia
% Licensed under the Apache License, version 2.0
% http://www.apache.org/licenses/LICENSE-2.0
%
% Development until 2012 by Earth Systems Science Computational Center (ESSCC)
% Development 2012-2013 by School of Earth Sciences
% Development from 2014 by Centre for Geoscience Computing (GeoComp)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Linear Magnetic Inversion}\label{sec:forward magnetic}
For the magnetic inversion we use the anomaly of the magnetic flux
density~\index{magnetic flux density} of the Earth.
The controlling material parameter is the susceptibility~\index{susceptibility}
$k$ of the rock.
With magnetization $M$ and inducing magnetic field anomaly $H$, the magnetic
flux density anomaly $B$ is given as
\begin{equation}\label{ref:MAG:EQU:1}
B_i = \mu_0 \cdot ( H_i + M_i )
\end{equation}
where $\mu_0 = 4 \pi \cdot 10^{-7} \frac{Vs}{Am}$.
In this forward model we make the simplifying assumption that the magnetization
is proportional to the known geomagnetic flux density $B^b$:
\begin{equation}\label{ref:MAG:EQU:4}
\mu_0 \cdot M_i = k \cdot B^b_i \;.
\end{equation}
Values for the magnetic flux density can be obtained by the International
Geomagnetic Reference Field (IGRF)~\cite{IGRF}
(or the Australian Geomagnetic Reference Field (AGRF)~\cite{AGRF}).
In most cases it is reasonable to assume that that the background field is
constant across the domain.
The magnetic field anomaly $H$ can be represented by the gradient of a
magnetic scalar potential\index{scalar potential!magnetic} $\psi$.
We use the form
\begin{equation}\label{ref:MAG:EQU:6}
\mu_0 \cdot H_i = - \psi_{,i}
\end{equation}
With this notation one gets from Equations~(\ref{ref:MAG:EQU:1}) and~(\ref{ref:MAG:EQU:4}):
\begin{equation}\label{ref:MAG:EQU:7}
B_i = - \psi_{,i} + k \cdot B^b_i
\end{equation}
As the $B$ magnetic flux density anomaly is divergence free ($B_{i,i}=0$) we obtain the PDE
\begin{equation}\label{ref:MAG:EQU:8}
- \psi_{,ii} = - (k B^r_i)_{,i}
\end{equation}
with $B^r_i=B^b_i$ which needs to be solved for a given susceptibility $k$.
The magnetic scalar potential is set to zero at the top of the domain
$\Gamma_{0}$.
On all other faces the normal component of the magnetic flux density anomaly
$B_i$ is set to zero, i.e. $n_i \psi_{,i} = k \cdot n_i B^b_i$ with outer
normal field $n_i$.
From the magnetic scalar potential we can calculate the magnetic flux density
anomaly via Equation~(\ref{ref:MAG:EQU:8}) to calculate the defect to the given
data.
If $B^{(s)}_i$ is a measurement of the magnetic flux density anomaly for
survey $s$ and $\omega^{(s)}_i$ is a weighting factor the data defect
$J^{mag}(k)$ in the notation of Chapter~\ref{chapter:ref:inversion cost function} is given as
\begin{equation}\label{ref:MAG:EQU:9}
J^{mag}(k) = \frac{1}{2}\sum_{s} \int_{\Omega} ( \omega^{(s)}_i \cdot (B_{i}- B^{(s)}_i) ) ^2 dx
\end{equation}
Summation over $i$ is performed.
The cost function kernel\index{cost function!kernel} is given as
\begin{equation}\label{ref:MAG:EQU:10}
K^{mag}(\psi_{,i},k) = \frac{1}{2}\sum_{s} ( \omega^{(s)}_i \cdot (k \cdot B^b_i - \psi_{,i} - B^{(s)}_i) ) ^2
\end{equation}
Notice that if magnetic flux density is measured in air one can ignore the
$k\cdot B^b_i$ as the susceptibility is zero.
In practice the magnetic flux density $b^{(s)}$ is measured along a certain
direction $d^{(s)}_i$ with a standard error deviation $\sigma^{(s)}$ at
certain locations in the domain.
In this case one sets $B^{(s)}_i=b^{(s)} \cdot d^{(s)}_i$ and the weighting
factors $\omega^{(s)}$ as
\begin{equation}\label{ref:MAG:EQU:11}
\omega^{(s)}_i
= \left\{
\begin{array}{lcl}
f \cdot \frac{d^{(s)}_i}{\sigma^{(s)}} & & \mbox{data are available} \\
& \mbox{ where } & \\
0 & & \mbox{ otherwise } \\
\end{array}
\right.
\end{equation}
where it is assumed that $d^{(s)}_i \cdot d^{(s)}_i =1$. With the objective to control the
gradient of the cost function the scaling factor $f$ is chosen in the way that
\begin{equation}\label{ref:MAG:EQU:12}
\sum_{s} \int_{\Omega} ( \omega^{(s)}_i B^{(s)}_i )
\cdot ( \omega^{(s)}_j \frac{1}{L_j} ) \cdot L^2 \cdot
( B^b_n \frac{1}{L_n} )
\cdot k' \;
dx =\alpha
\end{equation}
where $\alpha$ defines a scaling factor which is typically set to one and $L$ is defined by equation~(\ref{ref:EQU:REG:6b}).
$k'$ is considering the
derivative of the density with respect to the level set function.
\subsection{Usage}
\begin{classdesc}{MagneticModel}{domain, w, B, background_field,
\optional{, coordinates=\None}
\optional{, fixPotentialAtBottom=False},
\optional{, tol=1e-8},
}
opens a magnetic forward model over the \Domain \member{domain} with
weighting factors \member{w} ($=\omega^{(s)}$) and measured magnetic flux
density anomalies \member{B} ($=B^{(s)}$).
The weighting factors and the measured magnetic flux density anomalies must be vectors.
\member{background_field} defines the background magnetic flux density $B^b$
as a vector with north, east and vertical components.
\member{tol} sets the tolerance for the solution of the PDE~(\ref{ref:MAG:EQU:8}).
If \member{fixPotentialAtBottom} is set to \True, the magnetic potential
at the bottom is set to zero in addition to the potential on the top.
\member{coordinates} set the reference coordinate system to be used. By the default the
Cartesian coordinate system is used.
\end{classdesc}
\begin{methoddesc}[MagneticModel]{rescaleWeights}{
\optional{scale=1.}
\optional{k_scale=1.}}
rescale the weighting factors such condition~(\ref{ref:MAG:EQU:12}) holds where
\member{scale} sets the scale $\alpha$
and \member{k_scale} sets $k'$. This method should be called before any inversion is started
in order to make sure that all components of the cost function are appropriately scaled.
\end{methoddesc}
\subsection{Gradient Calculation}
This section briefly explains how the gradient
$\frac{\partial J^{mag}}{\partial k}$ of the cost function $J^{mag}$ with
respect to the susceptibility $k$ is calculated. We follow the concept as outlined in section~\ref{chapter:ref:inversion cost function:gradient}.
The magnetic potential $\psi$ from PDE~(\ref{ref:MAG:EQU:8}) is solved in weak form:
\begin{equation}\label{ref:MAG:EQU:201}
\int_{\Omega} q_{,i} \psi_{,i} \; dx = \int_{\Omega} k \cdot q_{,i} B^r_i \; dx
\end{equation}
for all $q$ with $q=0$ on $\Gamma_{0}$.
In the following we set $\Psi[k]=\psi$ for a given susceptibility $k$ as
solution of the variational problem~(\ref{ref:MAG:EQU:201}).
If $\Gamma_{k}$ denotes the region of the domain where the susceptibility is
known and for a given direction $p$ with $p=0$ on $\Gamma_{k}$ one has
\begin{equation}\label{ref:MAG:EQU:201aa}
\int_{\Omega} \frac{\partial J^{mag}}{\partial k} \cdot p \; dx = \int_{\Omega}
\sum_{s} (\omega^{(s)}_j
( B^{(s)}_j-B_{j})) \cdot ( \omega^{(s)}_i ( \Psi[p]_{,i} - p \cdot B^b_i ) ) \; dx
\end{equation}
With
\begin{equation}\label{ref:MAG:EQU:202c}
Y_i[\psi]= \sum_{s} (\omega^{(s)}_j
(B^{(s)}_j - B_{j}) ) \cdot \omega^{(s)}_i
\end{equation}
this is written as
\begin{equation}\label{ref:MAG:EQU:202cc}
\int_{\Omega} \frac{\partial J^{mag}}{\partial k} \cdot p \; dx = \int_{\Omega}
Y_i[\psi] \Psi[p]_{,i} - p \cdot Y_i[\psi]B^b_i \; dx
\end{equation}
We then set adjoint function $Y^*[\psi]$ as the solution of the equation
\begin{equation}\label{ref:MAG:EQU:202d}
\int_{\Omega} r_{,i} Y^*[\psi]_{,i} \; dx = \int_{\Omega} r_{,i} Y_i[\psi] \; dx \mbox{ for all } r \mbox{ with } r=0 \mbox{ on } \Gamma_{0}
\end{equation}
with $Y^*[\psi]=0$ on $\Gamma_{0}$. With $r=\Psi[p]$ we get
\begin{equation}\label{ref:MAG:EQU:202dd}
\int_{\Omega} \Psi[p]_{,i} Y^*[\psi]_{,i} \; dx = \int_{\Omega} \Psi[p]_{,i} Y_i[\psi] \; dx
\end{equation}
and from Equation~(\ref{ref:MAG:EQU:201}) with $q=Y^*[\psi]$ we get
\begin{equation}\label{ref:MAG:EQU:20e}
\int_{\Omega} Y^*[\psi]_{,i} \Psi[p]_{,i} \; dx = \int_{\Omega} p \cdot Y^*[\psi]_{,i} B^r_i \; dx
\end{equation}
which leads to
\begin{equation}\label{ref:MAG:EQU:20ee}
\int_{\Omega} \Psi[p]_{,i} ,Y_i[\psi] \; dx = \int_{\Omega} p \cdot Y^*[\psi]_{,i} B^r_i \; dx
\end{equation}
and finally
\begin{equation}\label{ref:MAG:EQU:201a}
\int_{\Omega} \frac{\partial J^{mag}}{\partial k} \cdot p \; dx = \int_{\Omega}
p \cdot (Y^*[\psi]_{,i} B^r_i - Y_i[\psi] B^b_i) \; dx
\end{equation}
or
\begin{equation}\label{ref:MAG:EQU:201b}
\frac{\partial J^{mag}}{\partial k} = Y^*[\psi]_{,i} B^r_i - Y_i[\psi] B^b_i
\end{equation}
\subsection{Geodetic Coordinates}
For geodetic coordinates $(\phi, \lambda, h)$, see Chapter~\ref{Chp:ref:coordinates}, the solution process needs to be slightly modified.
Observations are recorded along the geodetic coordinates axes $\alpha$ rather than the Cartesian axes $i$. In fact we
have in equation~\ref{ref:MAG:EQU:9}:
\begin{equation}\label{ref:MAG:EQU:300}
\omega^{(s)}_i \cdot (B_{i}- B^{(s)}_i) = \omega^{(s)}_{\alpha} \cdot (B_{{\alpha}}- B^{(s)}_{\alpha})
\end{equation}
where now $B^{(s)}_{\alpha}$ are the observational data with weighting factors $\omega^{(s)}_{\alpha}$. Using the
fact that $B_{{\alpha}} = k \cdot B^b_{{\alpha}} -d_{\alpha \alpha} \psi_{,\alpha}$
equation~\ref{ref:MAG:EQU:10} translates to
\begin{equation}\label{ref:MAG:EQU:301}
J^{mag}(k) = \frac{1}{2}\sum_{s} \int_{\widehat{\Omega}}
( \omega^{(s)}_{\alpha} \cdot (d_{\alpha \alpha} \psi_{,\alpha} - k \cdot B^b_{{\alpha}} + B^{(s)}_{\alpha} ) ) ^2 \; v \; d\widehat{x}
\end{equation}
where $\widehat{\Omega}$ and $d\widehat{x}$ refer to integration over the geodetic coordinates axes. This can be rearranged to
\begin{equation}\label{ref:MAG:EQU:301bb}
J^{mag}(k) = \frac{1}{2}\sum_{s} \int_{\widehat{\Omega}}
( \omega^{(s)}_{\alpha} v^{\frac{1}{2}} d_{\alpha \alpha} \cdot (
\psi_{,\alpha} - k \cdot v_{\alpha \alpha} B^b_{{\alpha}} + v_{\alpha \alpha} B^{(s)}_{\alpha} ) ) ^2 \; d\widehat{x}
=\frac{1}{2}\sum_{s} \int_{\widehat{\Omega}}
( {\widehat{\omega}}^{(s)}_{\alpha}\cdot ( \psi_{,\alpha} - k \cdot \widehat{B}^b_{{\alpha}}+ \widehat{B}^{(s)}_{\alpha} ) ) ^2 \; d\widehat{x}
\end{equation}
with
\begin{equation}\label{ref:MAG:EQU:301b}
\widehat{\omega}^{(s)}_{\alpha} = \omega^{(s)}_{\alpha} v^{\frac{1}{2}} d_{\alpha \alpha} \mbox{ , }
\widehat{B}^{(s)}_{\alpha}=
\frac{1}{d_{\alpha \alpha}} B^{(s)}_{\alpha} \mbox{ and } \widehat{B}^b_{{\alpha}} = \frac{1}{d_{\alpha \alpha}} B^b_{{\alpha}}
\end{equation}
which means one can apply the Cartesian formulation to the geodetic coordinates using modified data.
The magnetic potential is calculated from
\begin{equation}\label{ref:MAG:EQU:302}
\int_{\widehat{\Omega}} v \; d_{\alpha \alpha}^2 q_{,\alpha} \psi_{,\alpha} \; d\widehat{x}
= \int_{\widehat{\Omega}} v \; d_{\alpha \alpha} k \cdot q_{,\alpha} B^r_{\alpha} \; d\widehat{x}
= \int_{\widehat{\Omega}} k \cdot q_{,\alpha} \widehat{B}^r_{\alpha} \; d\widehat{x}
\end{equation}
with
\begin{equation}\label{ref:MAG:EQU:302b}
\widehat{B}^r_{\alpha} =v \; d_{\alpha \alpha} \widehat{B}^r_{\alpha}
\end{equation}
see equation~\ref{ref:MAG:EQU:201}, and the adjoint function $Y^*[\psi]$ for $Y_{\alpha}[\psi]$ is given from
\begin{equation}\label{ref:MAG:EQU:303}
\int_{\widehat{\Omega}} v \; d_{\alpha \alpha}^2 q_{,\alpha} Y^*[\psi]_{,\alpha } \;d\widehat{x} =
\int_{\widehat{\Omega}} r_{,{\alpha}} ,Y_{\alpha}[\psi] \;d\widehat{x}
\end{equation}
and finally
\begin{equation}\label{ref:MAG:EQU:310}
\frac{\partial J^{mag}}{\partial k} = Y^*[\psi]_{,{\alpha}} B^r_{\alpha} - Y_i[\psi] B^b_{\alpha}
\end{equation}
|