File: ForwardMagneticIntensity.tex

package info (click to toggle)
python-escript 5.6-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 144,196 kB
  • sloc: python: 592,057; cpp: 136,909; ansic: 18,675; javascript: 9,411; xml: 3,384; sh: 740; makefile: 203
file content (172 lines) | stat: -rw-r--r-- 7,896 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Copyright (c) 2003-2018 by The University of Queensland
% http://www.uq.edu.au
%
% Primary Business: Queensland, Australia
% Licensed under the Apache License, version 2.0
% http://www.apache.org/licenses/LICENSE-2.0
%
% Development until 2012 by Earth Systems Science Computational Center (ESSCC)
% Development 2012-2013 by School of Earth Sciences
% Development from 2014 by Centre for Geoscience Computing (GeoComp)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


\section{Linear Magnetic Intensity Inversion}\label{sec:forward magnetic intensity}
An alternative target for then inversion is the intensity anomaly of the magnetic flux
density. In this case the difference $b$ of the length of the total flux
density $B^{tot}=B^b+B$ to the back ground flux density $B^b$~\index{magnetic flux density}:
\begin{equation}\label{ref:IMAG:EQU:0}
b=\|B^{tot}\| -\|B^{b}\|
\end{equation}
where is the Euclean norm is defined as  
\begin{equation}\label{ref:IMAG:EQU:1}
\|B\| =  \sqrt{B_i B_i}
\end{equation}
and we use the notations of the previous section~\ref{sec:forward magnetic}.   
We have 
\begin{equation}\label{ref:IMAG:EQU:1b}
\|B^{tot}\|^2 = \|B^{b}\|^2 + 2 B^{b}_i B_i + \|B\|^2 \approx  \|B^{b}\|^2 + 2 B^{b}_i B_i
\end{equation}
where the term $\|B\|^2$ of the anomaly can is assumed to be neglagable. 
This gives 
\begin{equation}\label{ref:IMAG:EQU:1bb}
\|B^{tot}\|  = \|B^{b}\| \sqrt{1 + \frac{2 B^{b}_i B_i}{\|B^{b}\|^2}} \approx  \|B^{b}\| \left(1 + \frac{B^{b}_i B_i}{\|B^{b}\|^2} \right) 
\end{equation}
and therefore
\begin{equation}\label{ref:IMAG:EQU:0b}
b= \frac{B^{b}_i B_i}{\|B^{b}\|}  = \hat{B}^{b}_i B_i \mbox{ with } \hat{B}^{b}_i = \frac{B^b_i}{\|B^{b}\|} 
\end{equation}
If $b^{(s)}_i$ is the measurement of the magnetic flux density intensity anomaly for
survey $s$ and $\omega^{(s)}$ is a weighting factor the data defect
$J^{mag}(k)$ in the notation of Chapter~\ref{chapter:ref:inversion cost function} is given as
\begin{equation}\label{ref:IMAG:EQU:9}
J^{mag}(k) = \frac{1}{2}\sum_{s} \int_{\Omega} \left( \omega^{(s)} \cdot ( \hat{B}^{b}_i B_i - b^{(s)} )\right)^2 dx
\end{equation} 

The cost function kernel\index{cost function!kernel} is given as
\begin{equation}\label{ref:IMAG:EQU:10}
K^{mag}(\psi_{,i},k) = \frac{1}{2}\sum_{s} \left( \omega^{(s)} \cdot (k \cdot  \|B^{b}\|  -  \hat{B}^{b}_i \psi_{,i} - b^{(s)}) \right)^2
\end{equation} 
Notice that if magnetic flux density is measured in air one can ignore the
$k\cdot B^b_i$ as the susceptibility is zero.

In practice the magnetic flux density intensity $b^{(s)}$ is measured 
with a standard error deviation $\sigma^{(s)}$ at certain locations in the domain.
In this case one sets the weighting
factors $\omega^{(s)}$ as
\begin{equation}\label{ref:IMAG:EQU:11}
\omega^{(s)} 
= \left\{
\begin{array}{lcl}
f \cdot  \frac{f}{\sigma^{(s)}} & & \mbox{data are available} \\
& \mbox{ where } & \\
0 & & \mbox{ otherwise } \\
\end{array}
\right.
\end{equation} 
With the objective to control the 
gradient of the cost function the scaling factor $f$ is chosen in the way that 
\begin{equation}\label{ref:IMAG:EQU:12}
\sum_{s} \int_{\Omega} ( \omega^{(s)}_i B^{(s)}_i ) 
 \cdot ( \omega^{(s)}_j \frac{1}{L_j} ) \cdot L^2 \cdot
( B^b_n \frac{1}{L_n} )
 \cdot k' \;
 dx =\alpha
\end{equation} 
where $\alpha$ defines a scaling factor which is typically set to one and $L$ is defined by equation~(\ref{ref:EQU:REG:6b}).
$k'$ is considering the 
derivative of the density with respect to the level set function. 



\subsection{Usage}

\begin{classdesc}{MagneticIntensityModel}{domain, w, b, background_field,
        \optional{, fixPotentialAtBottom=False},
        \optional{, tol=1e-8},
}
opens a magnetic forward model over the \Domain \member{domain} with 
weighting factors \member{w} ($=\omega^{(s)}$) and measured magnetic flux
density anomalies \member{b} ($=b^{(s)}$).
The weighting factors and the  measured magnetic flux density anomalies must be scalars.
\member{background_field} defines the background magnetic flux density $B^b$
as a vector with north, east and vertical components. 
\member{tol} sets the tolerance for the solution of the PDE~(\ref{ref:MAG:EQU:8}).
If \member{fixPotentialAtBottom} is set to  \True, the magnetic potential 
at the bottom is set to zero in addition to the potential on the top. 
\member{coordinates} set the reference coordinate system to be used. By the default the 
Cartesian coordinate system is used.
\end{classdesc}

\begin{methoddesc}[MagneticModel]{rescaleWeights}{
        \optional{scale=1.}
 \optional{k_scale=1.}}
rescale the weighting factors such condition~(\ref{ref:IMAG:EQU:12}) holds where 
\member{scale} sets the scale $\alpha$
and \member{k_scale} sets $k'$. This method should be called before any inversion is started
in order to make sure that all components of the cost function are appropriately scaled.
\end{methoddesc}


\subsection{Gradient Calculation}
This section briefly explains how the gradient
$\frac{\partial J^{mag}}{\partial k}$ of the cost function $J^{mag}$ with
respect to the susceptibility $k$ is calculated.  We follow the concept as outlined in section~\ref{chapter:ref:inversion cost function:gradient}.

The magnetic potential $\psi$ from PDE~(\ref{ref:MAG:EQU:8}) is solved in weak form:
\begin{equation}\label{ref:IMAG:EQU:201}
\int_{\Omega} q_{,i} \psi_{,i} \; dx  = \int_{\Omega}  k \cdot q_{,i}  B^r_i \; dx 
\end{equation} 
for all $q$ with $q=0$ on $\Gamma_{0}$.
In the following we set $\Psi[k]=\psi$ for a given susceptibility $k$ as
solution of the variational problem~(\ref{ref:MAG:EQU:201}).
If $\Gamma_{k}$ denotes the region of the domain where the susceptibility is
known and for a given direction $p$ with $p=0$ on $\Gamma_{k}$ one has
\begin{equation}\label{ref:IMAG:EQU:201aa}
\int_{\Omega}   \frac{\partial J^{mag}}{\partial k} \cdot p \; dx  = \int_{\Omega}  
\sum_{s} 
\omega^{(s)} \; \left(b^{(s)} - k \cdot  \|B^{b}\|  +  \hat{B}^{b}_i \psi_{,i}  \right)
\cdot \omega^{(s)} \; \left(\hat{B}^{b}_i \Psi[p]_{,i} - p \cdot  \|B^{b}\| \right) \; dx  
\end{equation}
With
\begin{equation}\label{ref:IMAG:EQU:202c}
Y_i[\psi]=   \sum_{s} 
(\omega^{(s)})^2 
\left(b^{(s)} - k \cdot  \|B^{b}\|  +  \hat{B}^{b}_i \psi_{,i} \right) \hat{B}^{b}_i
\end{equation} 
this is written as 
\begin{equation}\label{ref:IMAG:EQU:202cc}
\int_{\Omega}   \frac{\partial J^{mag}}{\partial k} \cdot p \;  dx  = \int_{\Omega}  
(Y_i[\psi] \Psi[p]_{,i} -p \cdot Y_i[\psi]B^b_i)   \; dx  
\end{equation} 
We then set adjoint function $Y^*[\psi]$ as the solution of the equation 
\begin{equation}\label{ref:IMAG:EQU:202d}
\int_{\Omega} r_{,i} Y^*[\psi]_{,i} \; dx  =  \int_{\Omega} r_{,i} Y_i[\psi]  \; dx  \mbox{ for all } r \mbox{ with } r=0 \mbox{ on } \Gamma_{0}
\end{equation} 
with $Y^*[\psi]=0$ on $\Gamma_{0}$. With $r=\Psi[p]$ we get
\begin{equation}\label{ref:IMAG:EQU:202dd}
\int_{\Omega} \Psi[p]_{,i} Y^*[\psi]_{,i} \; dx  =  \int_{\Omega} \Psi[p]_{,i} Y_i[\psi]  \; dx
\end{equation} 
and from Equation~(\ref{ref:IMAG:EQU:201}) with $q=Y^*[\psi]$ we get
\begin{equation}\label{ref:IMAG:EQU:20e}
\int_{\Omega} Y^*[\psi]_{,i}  \Psi[p]_{,i} \; dx  = \int_{\Omega}  p \cdot Y^*[\psi]_{,i}  B^r_i \; dx  
\end{equation}
which leads to 
\begin{equation}\label{ref:IMAG:EQU:20ee}
\int_{\Omega} \Psi[p]_{,i} ,Y_i[\psi]  \; dx  = \int_{\Omega}  p \cdot Y^*[\psi]_{,i}  B^r_i \; dx  
\end{equation}
and finally
\begin{equation}\label{ref:IMAG:EQU:201a}
\int_{\Omega}   \frac{\partial J^{mag}}{\partial k} \cdot p \;  dx  = \int_{\Omega}  
p \cdot (Y^*[\psi]_{,i}  B^r_i - Y_i[\psi] B^b_i) \; dx  
\end{equation} 
or 
\begin{equation}\label{ref:IMAG:EQU:201b}
\frac{\partial J^{mag}}{\partial k} = Y^*[\psi]_{,i}  B^r_i - Y_i[\psi] B^b_i
\end{equation}

\subsection{Geodetic Coordinates}
Not supported yet.