1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Copyright (c) 2003-2018 by The University of Queensland
% http://www.uq.edu.au
%
% Primary Business: Queensland, Australia
% Licensed under the Apache License, version 2.0
% http://www.apache.org/licenses/LICENSE-2.0
%
% Development until 2012 by Earth Systems Science Computational Center (ESSCC)
% Development 2012-2013 by School of Earth Sciences
% Development from 2014 by Centre for Geoscience Computing (GeoComp)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Linear Magnetic Intensity Inversion}\label{sec:forward magnetic intensity}
An alternative target for then inversion is the intensity anomaly of the magnetic flux
density. In this case the difference $b$ of the length of the total flux
density $B^{tot}=B^b+B$ to the back ground flux density $B^b$~\index{magnetic flux density}:
\begin{equation}\label{ref:IMAG:EQU:0}
b=\|B^{tot}\| -\|B^{b}\|
\end{equation}
where is the Euclean norm is defined as
\begin{equation}\label{ref:IMAG:EQU:1}
\|B\| = \sqrt{B_i B_i}
\end{equation}
and we use the notations of the previous section~\ref{sec:forward magnetic}.
We have
\begin{equation}\label{ref:IMAG:EQU:1b}
\|B^{tot}\|^2 = \|B^{b}\|^2 + 2 B^{b}_i B_i + \|B\|^2 \approx \|B^{b}\|^2 + 2 B^{b}_i B_i
\end{equation}
where the term $\|B\|^2$ of the anomaly can is assumed to be neglagable.
This gives
\begin{equation}\label{ref:IMAG:EQU:1bb}
\|B^{tot}\| = \|B^{b}\| \sqrt{1 + \frac{2 B^{b}_i B_i}{\|B^{b}\|^2}} \approx \|B^{b}\| \left(1 + \frac{B^{b}_i B_i}{\|B^{b}\|^2} \right)
\end{equation}
and therefore
\begin{equation}\label{ref:IMAG:EQU:0b}
b= \frac{B^{b}_i B_i}{\|B^{b}\|} = \hat{B}^{b}_i B_i \mbox{ with } \hat{B}^{b}_i = \frac{B^b_i}{\|B^{b}\|}
\end{equation}
If $b^{(s)}_i$ is the measurement of the magnetic flux density intensity anomaly for
survey $s$ and $\omega^{(s)}$ is a weighting factor the data defect
$J^{mag}(k)$ in the notation of Chapter~\ref{chapter:ref:inversion cost function} is given as
\begin{equation}\label{ref:IMAG:EQU:9}
J^{mag}(k) = \frac{1}{2}\sum_{s} \int_{\Omega} \left( \omega^{(s)} \cdot ( \hat{B}^{b}_i B_i - b^{(s)} )\right)^2 dx
\end{equation}
The cost function kernel\index{cost function!kernel} is given as
\begin{equation}\label{ref:IMAG:EQU:10}
K^{mag}(\psi_{,i},k) = \frac{1}{2}\sum_{s} \left( \omega^{(s)} \cdot (k \cdot \|B^{b}\| - \hat{B}^{b}_i \psi_{,i} - b^{(s)}) \right)^2
\end{equation}
Notice that if magnetic flux density is measured in air one can ignore the
$k\cdot B^b_i$ as the susceptibility is zero.
In practice the magnetic flux density intensity $b^{(s)}$ is measured
with a standard error deviation $\sigma^{(s)}$ at certain locations in the domain.
In this case one sets the weighting
factors $\omega^{(s)}$ as
\begin{equation}\label{ref:IMAG:EQU:11}
\omega^{(s)}
= \left\{
\begin{array}{lcl}
f \cdot \frac{f}{\sigma^{(s)}} & & \mbox{data are available} \\
& \mbox{ where } & \\
0 & & \mbox{ otherwise } \\
\end{array}
\right.
\end{equation}
With the objective to control the
gradient of the cost function the scaling factor $f$ is chosen in the way that
\begin{equation}\label{ref:IMAG:EQU:12}
\sum_{s} \int_{\Omega} ( \omega^{(s)}_i B^{(s)}_i )
\cdot ( \omega^{(s)}_j \frac{1}{L_j} ) \cdot L^2 \cdot
( B^b_n \frac{1}{L_n} )
\cdot k' \;
dx =\alpha
\end{equation}
where $\alpha$ defines a scaling factor which is typically set to one and $L$ is defined by equation~(\ref{ref:EQU:REG:6b}).
$k'$ is considering the
derivative of the density with respect to the level set function.
\subsection{Usage}
\begin{classdesc}{MagneticIntensityModel}{domain, w, b, background_field,
\optional{, fixPotentialAtBottom=False},
\optional{, tol=1e-8},
}
opens a magnetic forward model over the \Domain \member{domain} with
weighting factors \member{w} ($=\omega^{(s)}$) and measured magnetic flux
density anomalies \member{b} ($=b^{(s)}$).
The weighting factors and the measured magnetic flux density anomalies must be scalars.
\member{background_field} defines the background magnetic flux density $B^b$
as a vector with north, east and vertical components.
\member{tol} sets the tolerance for the solution of the PDE~(\ref{ref:MAG:EQU:8}).
If \member{fixPotentialAtBottom} is set to \True, the magnetic potential
at the bottom is set to zero in addition to the potential on the top.
\member{coordinates} set the reference coordinate system to be used. By the default the
Cartesian coordinate system is used.
\end{classdesc}
\begin{methoddesc}[MagneticModel]{rescaleWeights}{
\optional{scale=1.}
\optional{k_scale=1.}}
rescale the weighting factors such condition~(\ref{ref:IMAG:EQU:12}) holds where
\member{scale} sets the scale $\alpha$
and \member{k_scale} sets $k'$. This method should be called before any inversion is started
in order to make sure that all components of the cost function are appropriately scaled.
\end{methoddesc}
\subsection{Gradient Calculation}
This section briefly explains how the gradient
$\frac{\partial J^{mag}}{\partial k}$ of the cost function $J^{mag}$ with
respect to the susceptibility $k$ is calculated. We follow the concept as outlined in section~\ref{chapter:ref:inversion cost function:gradient}.
The magnetic potential $\psi$ from PDE~(\ref{ref:MAG:EQU:8}) is solved in weak form:
\begin{equation}\label{ref:IMAG:EQU:201}
\int_{\Omega} q_{,i} \psi_{,i} \; dx = \int_{\Omega} k \cdot q_{,i} B^r_i \; dx
\end{equation}
for all $q$ with $q=0$ on $\Gamma_{0}$.
In the following we set $\Psi[k]=\psi$ for a given susceptibility $k$ as
solution of the variational problem~(\ref{ref:MAG:EQU:201}).
If $\Gamma_{k}$ denotes the region of the domain where the susceptibility is
known and for a given direction $p$ with $p=0$ on $\Gamma_{k}$ one has
\begin{equation}\label{ref:IMAG:EQU:201aa}
\int_{\Omega} \frac{\partial J^{mag}}{\partial k} \cdot p \; dx = \int_{\Omega}
\sum_{s}
\omega^{(s)} \; \left(b^{(s)} - k \cdot \|B^{b}\| + \hat{B}^{b}_i \psi_{,i} \right)
\cdot \omega^{(s)} \; \left(\hat{B}^{b}_i \Psi[p]_{,i} - p \cdot \|B^{b}\| \right) \; dx
\end{equation}
With
\begin{equation}\label{ref:IMAG:EQU:202c}
Y_i[\psi]= \sum_{s}
(\omega^{(s)})^2
\left(b^{(s)} - k \cdot \|B^{b}\| + \hat{B}^{b}_i \psi_{,i} \right) \hat{B}^{b}_i
\end{equation}
this is written as
\begin{equation}\label{ref:IMAG:EQU:202cc}
\int_{\Omega} \frac{\partial J^{mag}}{\partial k} \cdot p \; dx = \int_{\Omega}
(Y_i[\psi] \Psi[p]_{,i} -p \cdot Y_i[\psi]B^b_i) \; dx
\end{equation}
We then set adjoint function $Y^*[\psi]$ as the solution of the equation
\begin{equation}\label{ref:IMAG:EQU:202d}
\int_{\Omega} r_{,i} Y^*[\psi]_{,i} \; dx = \int_{\Omega} r_{,i} Y_i[\psi] \; dx \mbox{ for all } r \mbox{ with } r=0 \mbox{ on } \Gamma_{0}
\end{equation}
with $Y^*[\psi]=0$ on $\Gamma_{0}$. With $r=\Psi[p]$ we get
\begin{equation}\label{ref:IMAG:EQU:202dd}
\int_{\Omega} \Psi[p]_{,i} Y^*[\psi]_{,i} \; dx = \int_{\Omega} \Psi[p]_{,i} Y_i[\psi] \; dx
\end{equation}
and from Equation~(\ref{ref:IMAG:EQU:201}) with $q=Y^*[\psi]$ we get
\begin{equation}\label{ref:IMAG:EQU:20e}
\int_{\Omega} Y^*[\psi]_{,i} \Psi[p]_{,i} \; dx = \int_{\Omega} p \cdot Y^*[\psi]_{,i} B^r_i \; dx
\end{equation}
which leads to
\begin{equation}\label{ref:IMAG:EQU:20ee}
\int_{\Omega} \Psi[p]_{,i} ,Y_i[\psi] \; dx = \int_{\Omega} p \cdot Y^*[\psi]_{,i} B^r_i \; dx
\end{equation}
and finally
\begin{equation}\label{ref:IMAG:EQU:201a}
\int_{\Omega} \frac{\partial J^{mag}}{\partial k} \cdot p \; dx = \int_{\Omega}
p \cdot (Y^*[\psi]_{,i} B^r_i - Y_i[\psi] B^b_i) \; dx
\end{equation}
or
\begin{equation}\label{ref:IMAG:EQU:201b}
\frac{\partial J^{mag}}{\partial k} = Y^*[\psi]_{,i} B^r_i - Y_i[\psi] B^b_i
\end{equation}
\subsection{Geodetic Coordinates}
Not supported yet.
|