1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
|
##############################################################################
#
# Copyright (c) 2003-2020 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
# Development from 2019 by School of Earth and Environmental Sciences
#
##############################################################################
from __future__ import print_function, division
__copyright__="""Copyright (c) 2003-2020 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
#from esys.escript import sqrt, EPSILON, cos, sin, Lsup, atan, length, matrixmult, wherePositive, matrix_mult, inner, Scalar, whereNonNegative, whereNonPositive, maximum, minimum, sign, whereNegative, whereZero
import esys.escriptcore.pdetools as pdt
#from .util import *
from . import util as es
import numpy
import math
__all__= ['FaultSystem']
class FaultSystem(object):
"""
The FaultSystem class defines a system of faults in the Earth's crust.
A fault system is defined by set of faults index by a tag. Each fault is defined by a starting point V0 and a list of
strikes ``strikes`` and length ``l``. The strikes and the length is used to define a polyline with points ``V[i]`` such that
- ``V[0]=V0``
- ``V[i]=V[i]+ls[i]*array(cos(strikes[i]),sin(strikes[i]),0)``
So ``strikes`` defines the angle between the direction of the fault segment and the x0 axis. ls[i]==0 is allowed.
In case of a 3D model a fault plane is defined through a dip and depth.
The class provides a mechanism to parametrise each fault with the domain [0,w0_max] x [0, w1_max] (to [0,w0_max] in the 2D case).
"""
NOTAG="__NOTAG__"
MIN_DEPTH_ANGLE=0.1
def __init__(self,dim=3):
"""
Sets up the fault system
:param dim: spatial dimension
:type dim: ``int`` of value 2 or 3
"""
if not (dim == 2 or dim == 3):
raise ValueError("only dimension2 2 and 3 are supported.")
self.__dim=dim
self.__top={}
self.__ls={}
self.__strikes={}
self.__strike_vectors={}
self.__medDepth={}
self.__total_length={}
if dim ==2:
self.__depths=None
self.__depth_vectors=None
self.__dips=None
self.__bottom=None
self.__normals=None
else:
self.__depths={}
self.__depth_vectors={}
self.__dips={}
self.__bottom={}
self.__normals={}
self.__offsets={}
self.__w1_max={}
self.__w0_max={}
self.__center=None
self.__orientation = None
def getStart(self,tag=None):
"""
returns the starting point of fault ``tag``
:rtype: ``numpy.array``.
"""
return self.getTopPolyline(tag)[0]
def getTags(self):
"""
returns a list of the tags used by the fault system
:rtype: ``list``
"""
return list(self.__top.keys())
def getDim(self):
"""
returns the spatial dimension
:rtype: ``int``
"""
return self.__dim
def getTopPolyline(self, tag=None):
"""
returns the polyline used to describe fault tagged by ``tag``
:param tag: the tag of the fault
:type tag: ``float`` or ``str``
:return: the list of vertices defining the top of the fault. The coordinates are ``numpy.array``.
"""
if tag is None: tag=self.NOTAG
return self.__top[tag]
def getStrikes(self, tag=None):
"""
:return: the strike of the segements in fault ``tag``
:rtype: ``list`` of ``float``
"""
if tag is None: tag=self.NOTAG
return self.__strikes[tag]
def getStrikeVectors(self, tag=None):
"""
:return: the strike vectors of fault ``tag``
:rtype: ``list`` of ``numpy.array``.
"""
if tag is None: tag=self.NOTAG
return self.__strike_vectors[tag]
def getLengths(self, tag=None):
"""
:return: the lengths of segments in fault ``tag``
:rtype: ``list`` of ``float``
"""
if tag is None: tag=self.NOTAG
return self.__ls[tag]
def getTotalLength(self, tag=None):
"""
:return: the total unrolled length of fault ``tag``
:rtype: ``float``
"""
if tag is None: tag=self.NOTAG
return self.__total_length[tag]
def getMediumDepth(self,tag=None):
"""
returns the medium depth of fault ``tag``
:rtype: ``float``
"""
if tag is None: tag=self.NOTAG
return self.__medDepth[tag]
def getDips(self, tag=None):
"""
returns the list of the dips of the segements in fault ``tag``
:param tag: the tag of the fault
:type tag: ``float`` or ``str``
:return: the list of segment dips. In the 2D case None is returned.
"""
if tag is None: tag=self.NOTAG
if self.getDim()==3:
return self.__dips[tag]
else:
return None
def getBottomPolyline(self, tag=None):
"""
returns the list of the vertices defining the bottom of the fault ``tag``
:param tag: the tag of the fault
:type tag: ``float`` or ``str``
:return: the list of vertices. In the 2D case None is returned.
"""
if tag is None: tag=self.NOTAG
if self.getDim()==3:
return self.__bottom[tag]
else:
return None
def getSegmentNormals(self, tag=None):
"""
returns the list of the normals of the segments in fault ``tag``
:param tag: the tag of the fault
:type tag: ``float`` or ``str``
:return: the list of vectors normal to the segments. In the 2D case None is returned.
"""
if tag is None: tag=self.NOTAG
if self.getDim()==3:
return self.__normals[tag]
else:
return None
def getDepthVectors(self, tag=None):
"""
returns the list of the depth vector at top vertices in fault ``tag``.
:param tag: the tag of the fault
:type tag: ``float`` or ``str``
:return: the list of segment depths. In the 2D case None is returned.
"""
if tag is None: tag=self.NOTAG
if self.getDim()==3:
return self.__depth_vectors[tag]
else:
return None
def getDepths(self, tag=None):
"""
returns the list of the depths of the segements in fault ``tag``.
:param tag: the tag of the fault
:type tag: ``float`` or ``str``
:return: the list of segment depths. In the 2D case None is returned.
"""
if tag is None: tag=self.NOTAG
if self.getDim()==3:
return self.__depths[tag]
else:
return None
def getW0Range(self,tag=None):
"""
returns the range of the parameterization in ``w0``
:rtype: two ``float``
"""
return self.getW0Offsets(tag)[0], self.getW0Offsets(tag)[-1]
def getW1Range(self,tag=None):
"""
returns the range of the parameterization in ``w1``
:rtype: two ``float``
"""
if tag is None: tag=self.NOTAG
return -self.__w1_max[tag],0
def getW0Offsets(self, tag=None):
"""
returns the offsets for the parametrization of fault ``tag``.
:return: the offsets in the parametrization
:rtype: ``list`` of ``float``
"""
if tag is None: tag=self.NOTAG
return self.__offsets[tag]
def getCenterOnSurface(self):
"""
returns the center point of the fault system at the surface
:rtype: ``numpy.array``
"""
if self.__center is None:
self.__center=numpy.zeros((3,),numpy.float)
counter=0
for t in self.getTags():
for s in self.getTopPolyline(t):
self.__center[:2]+=s[:2]
counter+=1
self.__center/=counter
return self.__center[:self.getDim()]
def getOrientationOnSurface(self):
"""
returns the orientation of the fault system in RAD on the surface around the fault system center
:rtype: ``float``
"""
if self.__orientation is None:
center=self.getCenterOnSurface()
covariant=numpy.zeros((2,2))
for t in self.getTags():
for s in self.getTopPolyline(t):
covariant[0,0]+=(center[0]-s[0])**2
covariant[0,1]+=(center[1]-s[1])*(center[0]-s[0])
covariant[1,1]+=(center[1]-s[1])**2
covariant[1,0]+=(center[1]-s[1])*(center[0]-s[0])
e, V=numpy.linalg.eigh(covariant)
if e[0]>e[1]:
d=V[:,0]
else:
d=V[:,1]
if abs(d[0])>0.:
self.__orientation=es.atan(d[1]/d[0])
else:
self.__orientation=math.pi/2
return self.__orientation
def transform(self, rot=0, shift=numpy.zeros((3,))):
"""
applies a shift and a consecutive rotation in the x0x1 plane.
:param rot: rotation angle in RAD
:type rot: ``float``
:param shift: shift vector to be applied before rotation
:type shift: ``numpy.array`` of size 2 or 3
"""
if self.getDim() == 2:
mat=numpy.array([[es.cos(rot), -es.sin(rot)], [es.sin(rot), es.cos(rot)] ])
else:
mat=numpy.array([[es.cos(rot), -es.sin(rot),0.], [es.sin(rot), es.cos(rot),0.], [0.,0.,1.] ])
for t in self.getTags():
strikes=[ s+ rot for s in self.getStrikes(t) ]
V0=self.getStart(t)
self.addFault(strikes = [ s+ rot for s in self.getStrikes(t) ], \
ls = self.getLengths(t), \
V0=numpy.dot(mat,self.getStart(t)+shift), \
tag =t, \
dips=self.getDips(t),\
depths=self.getDepths(t), \
w0_offsets=self.getW0Offsets(t), \
w1_max=-self.getW1Range(t)[0])
def addFault(self, strikes, ls, V0=[0.,0.,0.],tag=None, dips=None, depths= None, w0_offsets=None, w1_max=None):
"""
adds a new fault to the fault system. The fault is named by ``tag``.
The fault is defined by a starting point V0 and a list of ``strikes`` and length ``ls``. The strikes and the length
is used to define a polyline with points ``V[i]`` such that
- ``V[0]=V0``
- ``V[i]=V[i]+ls[i]*array(cos(strikes[i]),sin(strikes[i]),0)``
So ``strikes`` defines the angle between the direction of the fault segment and the x0 axis. In 3D ``ls[i]`` ==0 is allowed.
In case of a 3D model a fault plane is defined through a dip ``dips`` and depth ``depths``.
From the dip and the depth the polyline ``bottom`` of the bottom of the fault is computed.
Each segment in the fault is decribed by the for vertices ``v0=top[i]``, ``v1==top[i+1]``, ``v2=bottom[i]`` and ``v3=bottom[i+1]``
The segment is parametrized by ``w0`` and ``w1`` with ``w0_offsets[i]<=w0<=w0_offsets[i+1]`` and ``-w1_max<=w1<=0``. Moreover
- ``(w0,w1)=(w0_offsets[i] , 0)->v0``
- ``(w0,w1)=(w0_offsets[i+1], 0)->v1``
- ``(w0,w1)=(w0_offsets[i] , -w1_max)->v2``
- ``(w0,w1)=(w0_offsets[i+1], -w1_max)->v3``
If no ``w0_offsets`` is given,
- ``w0_offsets[0]=0``
- ``w0_offsets[i]=w0_offsets[i-1]+L[i]``
where ``L[i]`` is the length of the segments on the top in 2D and in the middle of the segment in 3D.
If no ``w1_max`` is given, the average fault depth is used.
:param strikes: list of strikes. This is the angle of the fault segment direction with x0 axis. Right hand rule applies.
:type strikes: ``list`` of ``float``
:param ls: list of fault lengths. In the case of a 3D fault a segment may have length 0.
:type ls: ``list`` of ``float``
:param V0: start point of the fault
:type V0: ``list`` or ``numpy.array`` with 2 or 3 components. ``V0[2]`` must be zero.
:param tag: the tag of the fault. If fault ``tag`` already exists it is overwritten.
:type tag: ``float`` or ``str``
:param dips: list of dip angles. Right hand rule around strike direction applies.
:type dips: ``list`` of ``float``
:param depths: list of segment depth. Value mut be positive in the 3D case.
:type depths: ``list`` of ``float``
:param w0_offsets: ``w0_offsets[i]`` defines the offset of the segment ``i`` in the fault to be used in the parametrization of the fault. If not present the cumulative length of the fault segments is used.
:type w0_offsets: ``list`` of ``float`` or ``None``
:param w1_max: the maximum value used for parametrization of the fault in the depth direction. If not present the mean depth of the fault segments is used.
:type w1_max: ``float``
:note: In the three dimensional case the lists ``dip`` and ``top`` must have the same length.
"""
if tag is None:
tag=self.NOTAG
else:
if self.NOTAG in self.getTags():
raise ValueError('Attempt to add a fault with no tag to a set of existing faults')
if not isinstance(strikes, list): strikes=[strikes, ]
n_segs=len(strikes)
if not isinstance(ls, list): ls=[ ls for i in range(n_segs) ]
if not n_segs==len(ls):
raise ValueError("number of strike direction and length must match.")
if len(V0)>2:
if abs(V0[2])>0: raise Value("start point needs to be surface (3rd component ==0)")
if self.getDim()==2 and not (dips is None and depths is None) :
raise ValueError('Spatial dimension two does not support dip and depth for faults.')
if not dips is None:
if not isinstance(dips, list): dips=[dips for i in range(n_segs) ]
if n_segs != len(dips):
raise ValueError('length of dips must be one less than the length of top.')
if not depths is None:
if not isinstance(depths, list): depths=[depths for i in range(n_segs+1) ]
if n_segs+1 != len(depths):
raise ValueError('length of depths must be one less than the length of top.')
if w0_offsets != None:
if len(w0_offsets) != n_segs+1:
raise ValueError('expected length of w0_offsets is %s'%(n_segs))
self.__center=None
self.__orientation = None
#
# in the 2D case we don't allow zero length:
#
if self.getDim() == 2:
for l in ls:
if l<=0: raise ValueError("length must be positive")
else:
for l in ls:
if l<0: raise ValueError("length must be non-negative")
for i in range(n_segs+1):
if depths[i]<0: raise ValueError("negative depth.")
#
# translate start point to numarray
#
V0= numpy.array(V0[:self.getDim()],numpy.double)
#
# set strike vectors:
#
strike_vectors=[]
top_polyline=[V0]
total_length=0
for i in range(n_segs):
v=numpy.zeros((self.getDim(),))
v[0]=es.cos(strikes[i])
v[1]=es.sin(strikes[i])
strike_vectors.append(v)
top_polyline.append(top_polyline[-1]+ls[i]*v)
total_length+=ls[i]
#
# normal and depth direction
#
if self.getDim()==3:
normals=[]
for i in range(n_segs):
normals.append(numpy.array([es.sin(dips[i])*strike_vectors[i][1],-es.sin(dips[i])*strike_vectors[i][0], es.cos(dips[i])]) )
d=numpy.cross(strike_vectors[0],normals[0])
if d[2]>0:
f=-1
else:
f=1
depth_vectors=[f*depths[0]*d/numpy.linalg.norm(d) ]
for i in range(1,n_segs):
d=-numpy.cross(normals[i-1],normals[i])
d_l=numpy.linalg.norm(d)
if d_l<=0:
d=numpy.cross(strike_vectors[i],normals[i])
d_l=numpy.linalg.norm(d)
else:
for L in [ strike_vectors[i], strike_vectors[i-1]]:
if numpy.linalg.norm(numpy.cross(L,d)) <= self.MIN_DEPTH_ANGLE * numpy.linalg.norm(L) * d_l:
raise ValueError("%s-th depth vector %s too flat."%(i, d))
if d[2]>0:
f=-1
else:
f=1
depth_vectors.append(f*d*depths[i]/d_l)
d=numpy.cross(strike_vectors[n_segs-1],normals[n_segs-1])
if d[2]>0:
f=-1
else:
f=1
depth_vectors.append(f*depths[n_segs]*d/numpy.linalg.norm(d))
bottom_polyline=[ top_polyline[i]+depth_vectors[i] for i in range(n_segs+1) ]
#
# calculate offsets if required:
#
if w0_offsets is None:
w0_offsets=[0.]
for i in range(n_segs):
if self.getDim()==3:
w0_offsets.append(w0_offsets[-1]+(float(numpy.linalg.norm(bottom_polyline[i+1]-bottom_polyline[i]))+ls[i])/2.)
else:
w0_offsets.append(w0_offsets[-1]+ls[i])
w0_max=max(w0_offsets)
if self.getDim()==3:
self.__normals[tag]=normals
self.__depth_vectors[tag]=depth_vectors
self.__depths[tag]=depths
self.__dips[tag]=dips
self.__bottom[tag]=bottom_polyline
self.__ls[tag]=ls
self.__strikes[tag]=strikes
self.__strike_vectors[tag]=strike_vectors
self.__top[tag]=top_polyline
self.__total_length[tag]=total_length
self.__offsets[tag]=w0_offsets
if self.getDim()==2:
self.__medDepth[tag]=0.
else:
self.__medDepth[tag]=sum([ numpy.linalg.norm(v) for v in depth_vectors])/len(depth_vectors)
if w1_max is None or self.getDim()==2: w1_max=self.__medDepth[tag]
self.__w0_max[tag]=w0_max
self.__w1_max[tag]=w1_max
def getMaxValue(self,f, tol=es.sqrt(es.EPSILON)):
"""
returns the tag of the fault of where ``f`` takes the maximum value and a `Locator` object which can be used to collect values from `Data` class objects at the location where the minimum is taken.
:param f: a distribution of values
:type f: `escript.Data`
:param tol: relative tolerance used to decide if point is on fault
:type tol: ``tol``
:return: the fault tag the maximum is taken, and a `Locator` object to collect the value at location of maximum value.
"""
ref=-es.Lsup(f)*2
f_max=ref
t_max=None
loc_max=None
x=f.getFunctionSpace().getX()
for t in self.getTags():
p,m=self.getParametrization(x,tag=t, tol=tol)
loc=((m*f)+(1.-m)*ref).internal_maxGlobalDataPoint()
f_t=f.getTupleForGlobalDataPoint(*loc)[0]
if f_t>f_max:
f_max=f_t
t_max=t
loc_max=loc
if loc_max is None:
return None, None
else:
return t_max, pdt.Locator(x.getFunctionSpace(),x.getTupleForGlobalDataPoint(*loc_max))
def getMinValue(self,f, tol=es.sqrt(es.EPSILON)):
"""
returns the tag of the fault of where ``f`` takes the minimum value and a `Locator` object which can be used to collect values from `Data` class objects at the location where the minimum is taken.
:param f: a distribution of values
:type f: `escript.Data`
:param tol: relative tolerance used to decide if point is on fault
:type tol: ``tol``
:return: the fault tag the minimum is taken, and a `Locator` object to collect the value at location of minimum value.
"""
ref=es.Lsup(f)*2
f_min=ref
t_min=None
loc_min=None
x=f.getFunctionSpace().getX()
for t in self.getTags():
p,m=self.getParametrization(x,tag=t, tol=tol)
loc=((m*f)+(1.-m)*ref).internal_minGlobalDataPoint()
f_t=f.getTupleForGlobalDataPoint(*loc)[0]
if f_t<f_min:
f_min=f_t
t_min=t
loc_min=loc
if loc_min is None:
return None, None
else:
return t_min, pdt.Locator(x.getFunctionSpace(),x.getTupleForGlobalDataPoint(*loc_min))
def getParametrization(self,x,tag=None, tol=es.sqrt(es.EPSILON), outsider=None):
"""
returns the parametrization of the fault ``tag`` in the fault system. In fact the values of the parametrization for at given coordinates ``x`` is returned. In addition to the value of the parametrization a mask is returned indicating if the given location is on the fault with given tolerance ``tol``.
Typical usage of the this method is
dom=Domain(..)
x=dom.getX()
fs=FaultSystem()
fs.addFault(tag=3,...)
p, m=fs.getParametrization(x, outsider=0,tag=3)
saveDataCSV('x.csv',p=p, x=x, mask=m)
to create a file with the coordinates of the points in ``x`` which are on the fault (as ``mask=m``) together with their location ``p`` in the fault coordinate system.
:param x: location(s)
:type x: `escript.Data` object or ``numpy.array``
:param tag: the tag of the fault
:param tol: relative tolerance to check if location is on fault.
:type tol: ``float``
:param outsider: value used for parametrization values outside the fault. If not present an appropriate value is choosen.
:type outsider: ``float``
:return: the coordinates ``x`` in the coordinate system of the fault and a mask indicating coordinates in the fault by 1 (0 elsewhere)
:rtype: `escript.Data` object or ``numpy.array``
"""
offsets=self.getW0Offsets(tag)
w1_range=self.getW1Range(tag)
w0_range=self.getW0Range(tag)[1]-self.getW0Range(tag)[0]
if outsider is None:
outsider=min(self.getW0Range(tag)[0],self.getW0Range(tag)[1])-abs(w0_range)/es.sqrt(es.EPSILON)
if isinstance(x,list): x=numpy.array(x, numpy.double)
updated=x[0]*0
if self.getDim()==2:
#
#
p=x[0]*0 + outsider
top=self.getTopPolyline(tag)
for i in range(1,len(top)):
d=top[i]-top[i-1]
h=x-top[i-1]
h_l=es.length(h)
d_l=es.length(d)
s=es.inner(h,d)/d_l**2
s=s*es.whereNonPositive(s-1.-tol)*es.whereNonNegative(s+tol)
m=es.whereNonPositive(es.length(h-s*d)-tol*es.maximum(h_l,d_l))*(1.-updated)
p=(1.-m)*p+m*(offsets[i-1]+(offsets[i]-offsets[i-1])*s)
updated=es.wherePositive(updated+m)
else:
p=x[:2]*0 + outsider
top=self.getTopPolyline(tag)
bottom=self.getBottomPolyline(tag)
n=self.getSegmentNormals(tag)
for i in range(len(top)-1):
h=x-top[i]
R=top[i+1]-top[i]
r=bottom[i+1]-bottom[i]
D0=bottom[i]-top[i]
D1=bottom[i+1]-top[i+1]
s_upper=es.matrix_mult(numpy.linalg.pinv(numpy.vstack((R,D1)).T),h)
s_lower=es.matrix_mult(numpy.linalg.pinv(numpy.vstack((r,D0)).T),h)
m_ul=es.wherePositive(s_upper[0]-s_upper[1])
s=s_upper*m_ul+s_lower*(1-m_ul)
s0=s[0]
s1=s[1]
m=es.whereNonNegative(s0+tol)*es.whereNonPositive(s0-1.-tol)*es.whereNonNegative(s1+tol)*es.whereNonPositive(s1-1.-tol)
s0=s0*m
s1=s1*m
atol=tol*es.maximum(es.length(h),es.length(top[i]-bottom[i+1]))
m=es.whereNonPositive(es.length(h-s0*R-s1*D1)*m_ul+(1-m_ul)*es.length(h-s0*r-s1*D0)-atol)
p[0]=(1.-m)*p[0]+m*(offsets[i]+(offsets[i+1]-offsets[i])*s0)
p[1]=(1.-m)*p[1]+m*(w1_range[1]+(w1_range[0]-w1_range[1])*s1)
updated=es.wherePositive(updated+m)
return p, updated
def getSideAndDistance(self,x,tag=None):
"""
returns the side and the distance at ``x`` from the fault ``tag``.
:param x: location(s)
:type x: `escript.Data` object or ``numpy.array``
:param tag: the tag of the fault
:return: the side of ``x`` (positive means to the right of the fault, negative to the left) and the distance to the fault. Note that a value zero for the side means that that the side is undefined.
"""
d=None
side=None
if self.getDim()==2:
mat=numpy.array([[0., 1.], [-1., 0.] ])
s=self.getTopPolyline(tag)
for i in range(1,len(s)):
q=(s[i]-s[i-1])
h=x-s[i-1]
q_l=es.length(q)
qt=es.matrixmult(mat,q) # orthogonal direction
t=es.inner(q,h)/q_l**2
t=es.maximum(es.minimum(t,1,),0.)
p=h-t*q
dist=es.length(p)
lside=es.sign(es.inner(p,qt))
if d is None:
d=dist
side=lside
else:
m=es.whereNegative(d-dist)
m2=es.wherePositive(es.whereZero(abs(lside))+m)
d=dist*(1-m)+d*m
side=lside*(1-m2)+side*m2
else:
ns=self.getSegmentNormals(tag)
top=self.getTopPolyline(tag)
bottom=self.getBottomPolyline(tag)
for i in range(len(top)-1):
h=x-top[i]
R=top[i+1]-top[i]
r=bottom[i+1]-bottom[i]
D0=bottom[i]-top[i]
D1=bottom[i+1]-top[i+1]
s_upper=es.matrix_mult(numpy.linalg.pinv(numpy.vstack((R,D1)).T),h)
s_lower=es.matrix_mult(numpy.linalg.pinv(numpy.vstack((r,D0)).T),h)
m_ul=es.wherePositive(s_upper[0]-s_upper[1])
s=s_upper*m_ul+s_lower*(1-m_ul)
s=es.maximum(es.minimum(s,1.),0)
p=h-(m_ul*R+(1-m_ul)*r)*s[0]-(m_ul*D1+(1-m_ul)*D0)*s[1]
dist=es.length(p)
lside=es.sign(es.inner(p,ns[i]))
if d is None:
d=dist
side=lside
else:
m=es.whereNegative(d-dist)
m2=es.wherePositive(es.whereZero(abs(lside))+m)
d=dist*(1-m)+d*m
side=lside*(1-m2)+side*m2
return side, d
|