1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
from __future__ import division, print_function
##############################################################################
#
# Copyright (c) 2009-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
__copyright__="""Copyright (c) 2009-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
############################################################FILE HEADER
# example07b.py
# Antony Hallam
# Acoustic Wave Equation Simulation using acceleration solution
# and lumping.
#######################################################EXTERNAL MODULES
import matplotlib
matplotlib.use('agg') #It's just here for automated testing
from esys.escript import *
from esys.weipa import saveVTK
import sys
import os
# smoothing operator
from esys.escript.pdetools import Projector, Locator
from esys.escript.unitsSI import *
import numpy as np
import pylab as pl
import matplotlib.cm as cm
from esys.escript.linearPDEs import LinearPDE, SolverOptions
try:
# This imports the rectangle domain function
from esys.finley import Rectangle
HAVE_FINLEY = True
except ImportError:
print("Finley module not available")
HAVE_FINLEY = False
########################################################MPI WORLD CHECK
if getMPISizeWorld() > 1:
import sys
print("This example will not run in an MPI world.")
sys.exit(0)
if HAVE_FINLEY:
#################################################ESTABLISHING VARIABLES
# where to save output data
savepath = "data/example07b"
mkDir(savepath) #make sure savepath exists
#Geometric and material property related variables.
mx = 1000. # model lenght
my = 1000. # model width
ndx = 500 # steps in x direction
ndy = 500 # steps in y direction
xstep=mx/ndx # calculate the size of delta x
ystep=my/ndy # calculate the size of delta y
c=380.0*m/sec # velocity of sound in air
csq=c*c #square of c
# Time related variables.
testing=True
if testing:
print('The testing end time is currently selected. This severely limits the number of time iterations.')
print("Try changing testing to False for more iterations.")
tend=0.004
else:
tend=1.0 # end time
h=0.0005 # time step
# data recording times
rtime=0.0 # first time to record
rtime_inc=tend/20.0 # time increment to record
#Check to make sure number of time steps is not too large.
print("Time step size= ",h, "Expected number of outputs= ",tend/h)
U0=0.005 # amplitude of point source
# want a spherical source in the middle of area
xc=[500,500] # with reference to mx,my this is the source location
####################################################DOMAIN CONSTRUCTION
mydomain=Rectangle(l0=mx,l1=my,n0=ndx, n1=ndy) #create the domain
x=mydomain.getX() #get the node locations of the domain
##########################################################ESTABLISH PDE
mypde=LinearPDE(mydomain) # create pde
# turn lumping on for more efficient solving
mypde.getSolverOptions().setSolverMethod(SolverOptions.HRZ_LUMPING)
mypde.setSymmetryOn() # turn symmetry on
mypde.setValue(D=1.) # set the value of D in the general form to 1.
############################################FIRST TIME STEPS AND SOURCE
# define small radius around point xc
src_radius = 25.
print("src_radius = ",src_radius)
# set initial values for first two time steps with source terms
u=U0*(cos(length(x-xc)*3.1415/src_radius)+1)*whereNegative(length(x-xc)-src_radius)
u_m1=u
#plot source shape
cut_loc=[] #where the cross section of the source along x will be
src_cut=[] #where the cross section of the source will be
# create locations for source cross section
for i in range(ndx//2-ndx//10,ndx//2+ndx//10):
cut_loc.append(xstep*i)
src_cut.append([xstep*i,xc[1]])
# locate the nearest nodes to the points in src_cut
src=Locator(mydomain,src_cut)
src_cut=src.getValue(u) #retrieve the values from the nodes
# plot the x locations vs value and save the figure
pl.plot(cut_loc,src_cut)
pl.axis([xc[0]-src_radius*3,xc[0]+src_radius*3,0.,2.*U0])
pl.savefig(os.path.join(savepath,"source_line.png"))
###########################SAVING THE VALUE AT A LOC FOR EACH TIME STEP
u_rec0=[] # array to hold values
rec=Locator(mydomain,[250.,250.]) #location to record
u_rec=rec.getValue(u); u_rec0.append(u_rec) #get the first two time steps
####################################################ITERATION VARIABLES
n=0 # iteration counter
t=0 # time counter
##############################################################ITERATION
while t<tend:
g=grad(u); pres=csq*g # get current pressure
mypde.setValue(X=-pres) # set values in pde
accel = mypde.getSolution() # get new acceleration
u_p1=(2.*u-u_m1)+h*h*accel # calculate the displacement for the next time step
u_m1=u; u=u_p1 # shift values back one time step for next iteration
# save current displacement, acceleration and pressure
if (t >= rtime):
saveVTK(os.path.join(savepath,"ex07b.%i.vtu"%n),displacement=length(u),\
acceleration=length(accel),tensor=pres)
rtime=rtime+rtime_inc #increment data save time
u_rec0.append(rec.getValue(u)) #location specific recording
# increment loop values
t=t+h; n=n+1
print("time step %d, t=%s"%(n,t))
# save location specific recording to file
pl.savetxt(os.path.join(savepath,'u_rec.asc'),u_rec0)
|