1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
from __future__ import division, print_function
##############################################################################
#
# Copyright (c) 2009-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
__copyright__="""Copyright (c) 2009-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
############################################################FILE HEADER
# example08b.py
# Antony Hallam
# Seismic Wave Equation Simulation using acceleration solution.
# Extend the solution in example 08a to use absorbing boundary
# conditions.
#######################################################EXTERNAL MODULES
import matplotlib
matplotlib.use('agg') #It's just here for automated testing
from esys.escript import *
from esys.weipa import saveVTK
import os
# smoothing operator
from esys.escript.pdetools import Projector, Locator
from esys.escript.unitsSI import *
import numpy as np
import pylab as pl
import matplotlib.cm as cm
from esys.escript.linearPDEs import LinearPDE, SolverOptions
try:
# This imports the rectangle domain function
from esys.finley import Rectangle
HAVE_FINLEY = True
except ImportError:
print("Finley module not available")
HAVE_FINLEY = False
########################################################MPI WORLD CHECK
if getMPISizeWorld() > 1:
import sys
print("This example will not run in an MPI world.")
sys.exit(0)
if HAVE_FINLEY:
#################################################ESTABLISHING VARIABLES
# where to save output data
savepath = "data/example08b"
mkDir(savepath)
#Geometric and material property related variables.
mx = 1000. # model lenght
my = 1000. # model width
ndx = 300 # steps in x direction
ndy = 300 # steps in y direction
xstep=mx/ndx # calculate the size of delta x
ystep=abs(my/ndy) # calculate the size of delta y
lam=3.462e9 #lames constant
mu=3.462e9 #bulk modulus
rho=1154. #density
# Time related variables.
testing=True
if testing:
print('The testing end time is currently selected. This severely limits the number of time iterations.')
print("Try changing testing to False for more iterations.")
tend=0.001
else:
tend=0.5 # end time
h=0.0001 # time step
# data recording times
rtime=0.0 # first time to record
rtime_inc=tend/50.0 # time increment to record
#Check to make sure number of time steps is not too large.
print("Time step size= ",h, "Expected number of outputs= ",tend/h)
U0=0.1 # amplitude of point source
dfeq=50 #Dominant Frequency
a = 2.0 * (np.pi * dfeq)**2.0
t0 = 5.0 / (2.0 * np.pi * dfeq)
srclength = 5. * t0
ls = int(srclength/h)
print('source length',ls)
source=np.zeros(ls,'float') # source array
decay1=np.zeros(ls,'float') # decay curve one
decay2=np.zeros(ls,'float') # decay curve two
time=np.zeros(ls,'float') # time values
g=np.log(0.01)/ls
ampmax=0
for it in range(0,ls):
t = it*h
tt = t-t0
dum1 = np.exp(-a * tt * tt)
source[it] = -2. * a * tt * dum1
# source[it] = exp(-a * tt * tt) !gaussian
if (abs(source[it]) > ampmax):
ampmax = abs(source[it])
#source[t]=np.exp(g*t)*U0*np.sin(2.*np.pi*t/(0.75*ls))*(np.exp(-.1*g*t)-1)
#decay1[t]=np.exp(g*t)
#decay2[t]=(np.exp(-.1*g*t)-1)
time[it]=t*h
#tdecay=decay1*decay2*U0
#decay1=decay1*U0; decay2=decay2*U0
pl.clf();
pl.plot(source)
#pl.plot(time,decay1);pl.plot(time,decay2);
#pl.plot(time,tdecay)
pl.savefig(os.path.join(savepath,'source.png'))
# will introduce a spherical source at middle left of bottom face
xc=[mx/2,0]
####################################################DOMAIN CONSTRUCTION
domain=Rectangle(l0=mx,l1=my,n0=ndx, n1=ndy,order=2) # create the domain
x=domain.getX() # get the locations of the nodes in the domani
##########################################################ESTABLISH PDE
mypde=LinearPDE(domain) # create pde
mypde.setSymmetryOn() # turn symmetry on
# turn lumping on for more efficient solving
mypde.getSolverOptions().setSolverMethod(SolverOptions.HRZ_LUMPING)
kmat = kronecker(domain) # create the kronecker delta function of the domain
mypde.setValue(D=kmat*rho) #set the general form value D
##########################################################ESTABLISH ABC
# Define where the boundary decay will be applied.
bn=50.
bleft=xstep*bn; bright=mx-(xstep*bn); bbot=my-(ystep*bn)
# btop=ystep*bn # don't apply to force boundary!!!
# locate these points in the domain
left=x[0]-bleft; right=x[0]-bright; bottom=x[1]-bbot
tgamma=0.85 # decay value for exponential function
def calc_gamma(G,npts):
func=np.sqrt(abs(-1.*np.log(G)/(npts**2.)))
return func
gleft = calc_gamma(tgamma,bleft)
gright = calc_gamma(tgamma,bleft)
gbottom= calc_gamma(tgamma,ystep*bn)
print('gamma', gleft,gright,gbottom)
# calculate decay functions
def abc_bfunc(gamma,loc,x,G):
func=exp(-1.*(gamma*abs(loc-x))**2.)
return func
fleft=abc_bfunc(gleft,bleft,x[0],tgamma)
fright=abc_bfunc(gright,bright,x[0],tgamma)
fbottom=abc_bfunc(gbottom,bbot,x[1],tgamma)
# apply these functions only where relevant
abcleft=fleft*whereNegative(left)
abcright=fright*wherePositive(right)
abcbottom=fbottom*wherePositive(bottom)
# make sure the inside of the abc is value 1
abcleft=abcleft+whereZero(abcleft)
abcright=abcright+whereZero(abcright)
abcbottom=abcbottom+whereZero(abcbottom)
# multiply the conditions together to get a smooth result
abc=abcleft*abcright*abcbottom
#visualise the boundary function
#abcT=abc.toListOfTuples()
#abcT=np.reshape(abcT,(ndx+1,ndy+1))
#pl.clf(); pl.imshow(abcT); pl.colorbar();
#pl.savefig(os.path.join(savepath,"abc.png"))
############################################FIRST TIME STEPS AND SOURCE
# define small radius around point xc
src_length = 40; print("src_length = ",src_length)
# set initial values for first two time steps with source terms
y=source[0]*(cos(length(x-xc)*3.1415/src_length)+1)*whereNegative(length(x-xc)-src_length)
src_dir=np.array([0.,1.]) # defines direction of point source as down
y=y*src_dir
mypde.setValue(y=y) #set the source as a function on the boundary
# turn lumping on for more efficient solving
mypde.getSolverOptions().setSolverMethod(SolverOptions.HRZ_LUMPING)
# for first two time steps
u=[0.0,0.0]*wherePositive(x)
u_m1=u
####################################################ITERATION VARIABLES
n=0 # iteration counter
t=0 # time counter
##############################################################ITERATION
while t<tend:
# get current stress
g=grad(u); stress=lam*trace(g)*kmat+mu*(g+transpose(g))
mypde.setValue(X=-stress*abc) # set PDE values
accel = mypde.getSolution() #get PDE solution for accelleration
u_p1=(2.*u-u_m1)+h*h*accel #calculate displacement
u_p1=u_p1*abc # apply boundary conditions
u_m1=u; u=u_p1 # shift values by 1
# save current displacement, acceleration and pressure
if (t >= rtime):
saveVTK(os.path.join(savepath,"ex08b.%05d.vtu"%n),displacement=length(u),\
acceleration=length(accel),tensor=stress)
rtime=rtime+rtime_inc #increment data save time
# increment loop values
t=t+h; n=n+1
if (n < ls):
y=source[n]*(cos(length(x-xc)*3.1415/src_length)+1)*whereNegative(length(x-xc)-src_length)
y=y*src_dir; mypde.setValue(y=y) #set the source as a function on the boundary
print("time step %d, t=%s"%(n,t))
|