File: example08b.py

package info (click to toggle)
python-escript 5.6-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 144,252 kB
  • sloc: python: 592,062; cpp: 136,909; ansic: 18,675; javascript: 9,411; xml: 3,384; sh: 740; makefile: 203
file content (222 lines) | stat: -rw-r--r-- 8,532 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from __future__ import division, print_function
##############################################################################
#
# Copyright (c) 2009-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################

__copyright__="""Copyright (c) 2009-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"

############################################################FILE HEADER
# example08b.py
# Antony Hallam
# Seismic Wave Equation Simulation using acceleration solution.
# Extend the solution in example 08a to use absorbing boundary
# conditions.

#######################################################EXTERNAL MODULES
import matplotlib
matplotlib.use('agg') #It's just here for automated testing
from esys.escript import *
from esys.weipa import saveVTK
import os
# smoothing operator 
from esys.escript.pdetools import Projector, Locator
from esys.escript.unitsSI import *
import numpy as np

import pylab as pl
import matplotlib.cm as cm
from esys.escript.linearPDEs import LinearPDE, SolverOptions
try:
    # This imports the rectangle domain function 
    from esys.finley import Rectangle
    HAVE_FINLEY = True
except ImportError:
    print("Finley module not available")
    HAVE_FINLEY = False
########################################################MPI WORLD CHECK
if getMPISizeWorld() > 1:
    import sys
    print("This example will not run in an MPI world.")
    sys.exit(0)

if HAVE_FINLEY:
    #################################################ESTABLISHING VARIABLES
    # where to save output data
    savepath = "data/example08b"
    mkDir(savepath)
    #Geometric and material property related variables.
    mx = 1000. # model lenght
    my = 1000. # model width
    ndx = 300 # steps in x direction 
    ndy = 300 # steps in y direction
    xstep=mx/ndx # calculate the size of delta x
    ystep=abs(my/ndy) # calculate the size of delta y
    lam=3.462e9 #lames constant
    mu=3.462e9  #bulk modulus
    rho=1154.   #density
    # Time related variables.
    testing=True
    if testing:
        print('The testing end time is currently selected. This severely limits the number of time iterations.')
        print("Try changing testing to False for more iterations.")
        tend=0.001
    else:
        tend=0.5    # end time

    h=0.0001    # time step
    # data recording times
    rtime=0.0 # first time to record
    rtime_inc=tend/50.0 # time increment to record
    #Check to make sure number of time steps is not too large.
    print("Time step size= ",h, "Expected number of outputs= ",tend/h)

    U0=0.1 # amplitude of point source

    dfeq=50 #Dominant Frequency
    a = 2.0 * (np.pi * dfeq)**2.0
    t0 = 5.0 / (2.0 * np.pi * dfeq)
    srclength = 5. * t0
    ls = int(srclength/h)
    print('source length',ls)

    source=np.zeros(ls,'float') # source array
    decay1=np.zeros(ls,'float') # decay curve one
    decay2=np.zeros(ls,'float') # decay curve two
    time=np.zeros(ls,'float')   # time values
    g=np.log(0.01)/ls

    ampmax=0
    for it in range(0,ls):
        t = it*h
        tt = t-t0
        dum1 = np.exp(-a * tt * tt)
        source[it] = -2. * a * tt * dum1
    #   source[it] = exp(-a * tt * tt)    !gaussian
        if (abs(source[it]) > ampmax):
            ampmax = abs(source[it])
        #source[t]=np.exp(g*t)*U0*np.sin(2.*np.pi*t/(0.75*ls))*(np.exp(-.1*g*t)-1)
        #decay1[t]=np.exp(g*t)
        #decay2[t]=(np.exp(-.1*g*t)-1)
        time[it]=t*h
    #tdecay=decay1*decay2*U0
    #decay1=decay1*U0; decay2=decay2*U0
    pl.clf(); 
    pl.plot(source)
    #pl.plot(time,decay1);pl.plot(time,decay2); 
    #pl.plot(time,tdecay)
    pl.savefig(os.path.join(savepath,'source.png'))

    # will introduce a spherical source at middle left of bottom face
    xc=[mx/2,0]

    ####################################################DOMAIN CONSTRUCTION
    domain=Rectangle(l0=mx,l1=my,n0=ndx, n1=ndy,order=2) # create the domain
    x=domain.getX() # get the locations of the nodes in the domani

    ##########################################################ESTABLISH PDE
    mypde=LinearPDE(domain) # create pde
    mypde.setSymmetryOn() # turn symmetry on
    # turn lumping on for more efficient solving
    mypde.getSolverOptions().setSolverMethod(SolverOptions.HRZ_LUMPING)
    kmat = kronecker(domain) # create the kronecker delta function of the domain
    mypde.setValue(D=kmat*rho) #set the general form value D

    ##########################################################ESTABLISH ABC
    # Define where the boundary decay will be applied.
    bn=50.
    bleft=xstep*bn; bright=mx-(xstep*bn); bbot=my-(ystep*bn)
    # btop=ystep*bn # don't apply to force boundary!!!

    # locate these points in the domain
    left=x[0]-bleft; right=x[0]-bright; bottom=x[1]-bbot

    tgamma=0.85   # decay value for exponential function
    def calc_gamma(G,npts):
        func=np.sqrt(abs(-1.*np.log(G)/(npts**2.)))
        return func

    gleft  = calc_gamma(tgamma,bleft)
    gright = calc_gamma(tgamma,bleft)
    gbottom= calc_gamma(tgamma,ystep*bn)

    print('gamma', gleft,gright,gbottom)

    # calculate decay functions
    def abc_bfunc(gamma,loc,x,G):
        func=exp(-1.*(gamma*abs(loc-x))**2.)
        return func

    fleft=abc_bfunc(gleft,bleft,x[0],tgamma)
    fright=abc_bfunc(gright,bright,x[0],tgamma)
    fbottom=abc_bfunc(gbottom,bbot,x[1],tgamma)
    # apply these functions only where relevant
    abcleft=fleft*whereNegative(left)
    abcright=fright*wherePositive(right)
    abcbottom=fbottom*wherePositive(bottom)
    # make sure the inside of the abc is value 1
    abcleft=abcleft+whereZero(abcleft)
    abcright=abcright+whereZero(abcright)
    abcbottom=abcbottom+whereZero(abcbottom)
    # multiply the conditions together to get a smooth result
    abc=abcleft*abcright*abcbottom

    #visualise the boundary function
    #abcT=abc.toListOfTuples()
    #abcT=np.reshape(abcT,(ndx+1,ndy+1))
    #pl.clf(); pl.imshow(abcT); pl.colorbar(); 
    #pl.savefig(os.path.join(savepath,"abc.png"))


    ############################################FIRST TIME STEPS AND SOURCE
    # define small radius around point xc
    src_length = 40; print("src_length = ",src_length)
    # set initial values for first two time steps with source terms
    y=source[0]*(cos(length(x-xc)*3.1415/src_length)+1)*whereNegative(length(x-xc)-src_length)
    src_dir=np.array([0.,1.]) # defines direction of point source as down
    y=y*src_dir
    mypde.setValue(y=y) #set the source as a function on the boundary
    # turn lumping on for more efficient solving
    mypde.getSolverOptions().setSolverMethod(SolverOptions.HRZ_LUMPING)
    # for first two time steps
    u=[0.0,0.0]*wherePositive(x)
    u_m1=u

    ####################################################ITERATION VARIABLES
    n=0 # iteration counter
    t=0 # time counter
    ##############################################################ITERATION
    while t<tend:
        # get current stress
        g=grad(u); stress=lam*trace(g)*kmat+mu*(g+transpose(g))
        mypde.setValue(X=-stress*abc) # set PDE values
        accel = mypde.getSolution() #get PDE solution for accelleration
        u_p1=(2.*u-u_m1)+h*h*accel #calculate displacement
        u_p1=u_p1*abc       # apply boundary conditions
        u_m1=u; u=u_p1 # shift values by 1
        # save current displacement, acceleration and pressure
        if (t >= rtime):
            saveVTK(os.path.join(savepath,"ex08b.%05d.vtu"%n),displacement=length(u),\
                                        acceleration=length(accel),tensor=stress)
            rtime=rtime+rtime_inc #increment data save time
        # increment loop values
        t=t+h; n=n+1
        if (n < ls):
            y=source[n]*(cos(length(x-xc)*3.1415/src_length)+1)*whereNegative(length(x-xc)-src_length)
            y=y*src_dir; mypde.setValue(y=y) #set the source as a function on the boundary
        print("time step %d, t=%s"%(n,t))