File: example09n.py

package info (click to toggle)
python-escript 5.6-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 144,252 kB
  • sloc: python: 592,062; cpp: 136,909; ansic: 18,675; javascript: 9,411; xml: 3,384; sh: 740; makefile: 203
file content (179 lines) | stat: -rw-r--r-- 6,383 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
##############################################################################
#
# Copyright (c) 2009-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
from __future__ import division, print_function

__copyright__="""Copyright (c) 2009-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"

"""
Author: Antony Hallam antony.hallam@uqconnect.edu.au
"""


############################################################FILE HEADER
# example09n.py
# Create a simple 3D model for use in example09. This is the low res
# mesh for illustration purposes only.
#
#######################################################EXTERNAL MODULES
from esys.pycad import * #domain constructor
from esys.pycad.gmsh import Design #Finite Element meshing package
from esys.escript import mkDir, getMPISizeWorld
import os
import math
try:
    # This imports the rectangle domain function 
    from esys.finley import MakeDomain
    HAVE_FINLEY = True
except ImportError:
    print("Finley module not available")
    HAVE_FINLEY = False
########################################################MPI WORLD CHECK
if getMPISizeWorld() > 1:
        import sys
        print("This example will not run in an MPI world.")
        sys.exit(0)

if HAVE_FINLEY:
    # make sure path exists 
    save_path= os.path.join("data","example09c") 
    mkDir(save_path)

    ################################################ESTABLISHING PARAMETERS
    #Model Parameters
    origin=[0,0]                  #orign of model
    xwidth=300.0                      #width of model
    depth=-100.0                      #depth of model
    nintf=3                         #number of the interfaces
    lintf_depths=[-20,-40,-60]       #depth of interfaces
    rintf_depths=[-30,-50,-70]      #vertical displacement across fault
    fault_dip=40.0                  #dip of fault plane
    fault_atsurface=50.0             #location of fault at surface
    fault_width=10                 #apparent width of fault plane 

    element_size=1.

    ####################################################DOMAIN CONSTRUCTION
    x0=0.0+origin[0]
    y0=0.0+origin[1]
    #z=0.0+origin[2]
    fault_atsurface=fault_atsurface+origin[0]
    xwidth=xwidth+origin[0]
    depth=depth+origin[1]
    # Construction points, 4 vectors that descend from the surface with nintf+2 points.
    left_edge=[Point(x0,y0)]; 
    leftf_edge=[Point(fault_atsurface,y0)]; 
    rightf_edge=[Point(fault_atsurface+fault_width,y0)]; 
    right_edge=[Point(xwidth,y0)]; 

    for i in range(0,nintf):
        left_shift=(lintf_depths[i]-y0)/math.tan(fault_dip)
        right_shift=(rintf_depths[i]-y0)/math.tan(fault_dip)
        left_edge.append(Point(x0,lintf_depths[i]+origin[1]))
        leftf_edge.append(Point(fault_atsurface+left_shift,lintf_depths[i]+origin[1]))
        rightf_edge.append(Point(fault_atsurface+right_shift+fault_width,rintf_depths[i]+origin[1]))
        right_edge.append(Point(xwidth,rintf_depths[i]+origin[1]))

    left_edge.append(Point(x0,depth))
    leftf_edge.append(Point(fault_atsurface+(depth-y0)/math.tan(fault_dip),depth))
    rightf_edge.append(Point(fault_atsurface+fault_width+(depth-y0)/math.tan(fault_dip),depth))
    right_edge.append(Point(xwidth,depth))

    #Build lines
    lright=[]; nlright=[];
    lhright=[]; nlhright=[];
    lfright=[]; nlfright=[];
    lfhor=[]; nlfhor=[];
    lfleft=[]; nlfleft=[];
    lhleft=[]; nlhleft=[];
    lleft=[]; nlleft=[];

    #Build vertical lines
    for i in range(0,nintf+1):
        lleft.append(Line(left_edge[i],left_edge[i+1]))
        lfleft.append(Line(leftf_edge[i],leftf_edge[i+1]))
        lfright.append(Line(rightf_edge[i],rightf_edge[i+1]))
        lright.append(Line(right_edge[i],right_edge[i+1]))

    #Build horizontal lines
    for i in range(0,nintf+2):
        lhleft.append(Line(left_edge[i],leftf_edge[i]))
        lhright.append(Line(rightf_edge[i],right_edge[i]))
    lfhor.append(Line(leftf_edge[0],rightf_edge[0]))
    lfhor.append(Line(leftf_edge[nintf+1],rightf_edge[nintf+1]))

    #Build negative lines
    for i in range(nintf,-1,-1):
        nlleft.append(-lleft[i])
        nlfleft.append(-lfleft[i])
        nlfright.append(-lfright[i])
        nlright.append(-lright[i])
    for i in range(nintf+1,-1,-1):
        nlhleft.append(-lhleft[i])
        nlhright.append(-lhright[i])

    #Build curveloops
    lcurves=[]
    fcurves=[]
    rcurves=[]

    #Fault
    for i in range(0,nintf+1):
        fcurves.append(lfleft[i])
    fcurves.append(lfhor[1])
    for i in range(0,nintf+1):
        fcurves.append(nlfright[i])
    fcurves.append(-lfhor[0])
    fcurves=CurveLoop(*tuple(fcurves))

    #Left and Right Blocks
    for i in range(0,nintf+1):
        lcurves.append(CurveLoop(lleft[i],lhleft[i+1],nlfleft[nintf-i],nlhleft[nintf+1-i]))
        rcurves.append(CurveLoop(lfright[i],lhright[i+1],nlright[nintf-i],nlhright[nintf+1-i]))
        
    #Build Surfaces
    fsurf=PlaneSurface(fcurves)
    lsurf=[]
    rsurf=[]
    for i in range(0,nintf+1):
        lsurf.append(PlaneSurface(lcurves[i]))
        rsurf.append(PlaneSurface(rcurves[i]))

    d=Design(dim=2, element_size=element_size, order=2)

    d.addItems(PropertySet('fault',fsurf))
    for i in range(0,nintf+1):
        d.addItems(PropertySet('lblock%d'%i,lsurf[i]))
        d.addItems(PropertySet('rblock%d'%i,rsurf[i]))

    d.addItems(PropertySet('top',lhright[0],lfhor[0],lhleft[0],lhright[4],lhleft[4],lfhor[1]))

    d.setScriptFileName(os.path.join(save_path,"example09n.geo"))
    d.setMeshFileName(os.path.join(save_path,"example09n.msh"))
    #
    #  make the domain:
    #
    domain=MakeDomain(d)
    # mesh=ReadMesh(fileName) this is how to read the fly file into escript
    domain.write(os.path.join(save_path,"example09n.fly"))