File: example10a.py

package info (click to toggle)
python-escript 5.6-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 144,252 kB
  • sloc: python: 592,062; cpp: 136,909; ansic: 18,675; javascript: 9,411; xml: 3,384; sh: 740; makefile: 203
file content (133 lines) | stat: -rw-r--r-- 4,632 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
##############################################################################
#
# Copyright (c) 2009-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
from __future__ import division, print_function

__copyright__="""Copyright (c) 2009-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"

"""
Author: Antony Hallam antony.hallam@uqconnect.edu.au
"""

############################################################FILE HEADER
# example10a.py
# Model of gravitational Potential for a gravity POLE.

#######################################################EXTERNAL MODULES
# To solve the problem it is necessary to import the modules we require.
import matplotlib
matplotlib.use('agg') #It's just here for automated testing

from esys.escript import * # This imports everything from the escript library
from esys.escript.unitsSI import * 
from esys.escript.linearPDEs import LinearPDE # This defines LinearPDE as LinearPDE
from esys.weipa import saveVTK # This imports the VTK file saver from weipa
import os, sys #This package is necessary to handle saving our data.
from math import pi, sqrt, sin, cos

from esys.escript.pdetools import Projector

try:
    from cblib import toRegGrid
    HAVE_CBLIB = True
except:
    HAVE_CBLIB = False
import pylab as pl #Plotting package
import numpy as np

try:
    from esys.finley import Rectangle
    HAVE_FINLEY = True
except ImportError:
    print("Finley module not available")
    HAVE_FINLEY = False
########################################################MPI WORLD CHECK
if getMPISizeWorld() > 1:
    print("This example will not run in an MPI world.")
    sys.exit(0)

if HAVE_FINLEY and HAVE_CBLIB:
    #################################################ESTABLISHING VARIABLES
    #Domain related.
    mx = 5000*m #meters - model length
    my = -5000*m #meters - model width
    ndx = 100 # mesh steps in x direction 
    ndy = 100 # mesh steps in y direction - one dimension means one element
    #PDE related
    rho=200.0
    rholoc=[2500,-2500]
    G=6.67300*10E-11

    ################################################ESTABLISHING PARAMETERS
    #the folder to put our outputs in, leave blank "" for script path 
    save_path= os.path.join("data","example10")
    #ensure the dir exists
    mkDir(save_path)

    ####################################################DOMAIN CONSTRUCTION
    domain = Rectangle(l0=mx,l1=my,n0=ndx, n1=ndy)
    x=Solution(domain).getX()
    mask=wherePositive(10-length(x-rholoc))
    rho=rho*mask
    kro=kronecker(domain)

    q=whereZero(x[1]-my)+whereZero(x[1])+whereZero(x[0])+whereZero(x[0]-mx)
    ###############################################ESCRIPT PDE CONSTRUCTION

    mypde=LinearPDE(domain)
    mypde.setValue(A=kro,Y=4.*3.1415*G*rho)
    mypde.setValue(q=q,r=0)
    mypde.setSymmetryOn()
    sol=mypde.getSolution()

    g_field=grad(sol) #The gravitational acceleration g.
    g_fieldz=g_field*[0,1] #The vertical component of the g field.
    gz=length(g_fieldz) #The magnitude of the vertical component.
    # Save the output to file.
    saveVTK(os.path.join(save_path,"ex10a.vtu"),\
            grav_pot=sol,g_field=g_field,g_fieldz=g_fieldz,gz=gz)

    ##################################################REGRIDDING & PLOTTING


    xi, yi, zi = toRegGrid(sol, nx=50, ny=50)
    pl.matplotlib.pyplot.autumn()
    pl.contourf(xi,yi,zi,10)
    pl.xlabel("Horizontal Displacement (m)")
    pl.ylabel("Depth (m)")
    pl.savefig(os.path.join(save_path,"Ucontour.png"))
    print("Solution has been plotted  ...")

    cut=int(len(xi)//2)

    pl.clf()

    r=np.linspace(0.0000001,mx/2,100)   # starting point would be 0 but that would cause division by zero later
    m=2*pl.pi*10*10*200*-G/(r*r)

    pl.plot(xi,zi[:,cut])
    #pl.plot(r+2500,m)
    pl.title("Potential Profile")
    pl.xlabel("Horizontal Displacement (m)")
    pl.ylabel("Potential")
    pl.savefig(os.path.join(save_path,"Upot00.png"))

    out=np.array([xi,zi[:,cut]])
    pl.savetxt('profile1.asc',out.transpose())
    pl.clf()