1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
##############################################################################
#
# Copyright (c) 2009-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
from __future__ import division, print_function
__copyright__="""Copyright (c) 2009-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
"""
Author: Antony Hallam antony.hallam@uqconnect.edu.au
"""
############################################################FILE HEADER
# example10a.py
# Model of gravitational Potential for a gravity POLE.
#######################################################EXTERNAL MODULES
# To solve the problem it is necessary to import the modules we require.
import matplotlib
matplotlib.use('agg') #It's just here for automated testing
from esys.escript import * # This imports everything from the escript library
from esys.escript.unitsSI import *
from esys.escript.linearPDEs import LinearPDE # This defines LinearPDE as LinearPDE
from esys.weipa import saveVTK # This imports the VTK file saver from weipa
import os, sys #This package is necessary to handle saving our data.
from math import pi, sqrt, sin, cos
from esys.escript.pdetools import Projector
try:
from cblib import toRegGrid
HAVE_CBLIB = True
except:
HAVE_CBLIB = False
import pylab as pl #Plotting package
import numpy as np
try:
from esys.finley import Rectangle
HAVE_FINLEY = True
except ImportError:
print("Finley module not available")
HAVE_FINLEY = False
########################################################MPI WORLD CHECK
if getMPISizeWorld() > 1:
print("This example will not run in an MPI world.")
sys.exit(0)
if HAVE_FINLEY and HAVE_CBLIB:
#################################################ESTABLISHING VARIABLES
#Domain related.
mx = 5000*m #meters - model length
my = -5000*m #meters - model width
ndx = 100 # mesh steps in x direction
ndy = 100 # mesh steps in y direction - one dimension means one element
#PDE related
rho=200.0
rholoc=[2500,-2500]
G=6.67300*10E-11
################################################ESTABLISHING PARAMETERS
#the folder to put our outputs in, leave blank "" for script path
save_path= os.path.join("data","example10")
#ensure the dir exists
mkDir(save_path)
####################################################DOMAIN CONSTRUCTION
domain = Rectangle(l0=mx,l1=my,n0=ndx, n1=ndy)
x=Solution(domain).getX()
mask=wherePositive(10-length(x-rholoc))
rho=rho*mask
kro=kronecker(domain)
q=whereZero(x[1]-my)+whereZero(x[1])+whereZero(x[0])+whereZero(x[0]-mx)
###############################################ESCRIPT PDE CONSTRUCTION
mypde=LinearPDE(domain)
mypde.setValue(A=kro,Y=4.*3.1415*G*rho)
mypde.setValue(q=q,r=0)
mypde.setSymmetryOn()
sol=mypde.getSolution()
g_field=grad(sol) #The gravitational acceleration g.
g_fieldz=g_field*[0,1] #The vertical component of the g field.
gz=length(g_fieldz) #The magnitude of the vertical component.
# Save the output to file.
saveVTK(os.path.join(save_path,"ex10a.vtu"),\
grav_pot=sol,g_field=g_field,g_fieldz=g_fieldz,gz=gz)
##################################################REGRIDDING & PLOTTING
xi, yi, zi = toRegGrid(sol, nx=50, ny=50)
pl.matplotlib.pyplot.autumn()
pl.contourf(xi,yi,zi,10)
pl.xlabel("Horizontal Displacement (m)")
pl.ylabel("Depth (m)")
pl.savefig(os.path.join(save_path,"Ucontour.png"))
print("Solution has been plotted ...")
cut=int(len(xi)//2)
pl.clf()
r=np.linspace(0.0000001,mx/2,100) # starting point would be 0 but that would cause division by zero later
m=2*pl.pi*10*10*200*-G/(r*r)
pl.plot(xi,zi[:,cut])
#pl.plot(r+2500,m)
pl.title("Potential Profile")
pl.xlabel("Horizontal Displacement (m)")
pl.ylabel("Potential")
pl.savefig(os.path.join(save_path,"Upot00.png"))
out=np.array([xi,zi[:,cut]])
pl.savetxt('profile1.asc',out.transpose())
pl.clf()
|