1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
# #START_LICENSE###########################################################
#
#
# This file is part of the Environment for Tree Exploration program
# (ETE). http://etetoolkit.org
#
# ETE is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# ETE is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
# License for more details.
#
# You should have received a copy of the GNU General Public License
# along with ETE. If not, see <http://www.gnu.org/licenses/>.
#
#
# ABOUT THE ETE PACKAGE
# =====================
#
# ETE is distributed under the GPL copyleft license (2008-2015).
#
# If you make use of ETE in published work, please cite:
#
# Jaime Huerta-Cepas, Joaquin Dopazo and Toni Gabaldon.
# ETE: a python Environment for Tree Exploration. Jaime BMC
# Bioinformatics 2010,:24doi:10.1186/1471-2105-11-24
#
# Note that extra references to the specific methods implemented in
# the toolkit may be available in the documentation.
#
# More info at http://etetoolkit.org. Contact: huerta@embl.de
#
#
# #END_LICENSE#############################################################
from __future__ import absolute_import
import os
import re
import logging
import shutil
from six.moves import map
log = logging.getLogger("main")
from ..master_task import ModelTesterTask
from ..master_job import Job
from ..errors import TaskError
from ..utils import basename, PhyloTree, GLOBALS, pjoin
__all__ = ["Prottest"]
class Prottest(ModelTesterTask):
def __init__(self, nodeid, alg_fasta_file, alg_phylip_file,
constrain_tree, seqtype, conf, confname):
GLOBALS["citator"].add('phyml')
self.alg_phylip_file = alg_phylip_file
self.alg_fasta_file = alg_fasta_file
self.confname = confname
self.conf = conf
self.lk_mode = conf[confname]["_lk_mode"]
if self.lk_mode == "raxml":
phyml_optimization = "n"
elif self.lk_mode == "phyml":
phyml_optimization = "lr"
else:
raise ValueError("Choose a valid lk_mode value (raxml or phyml)")
base_args = {
"--datatype": "aa",
"--input": self.alg_phylip_file,
"--bootstrap": "0",
"-o": phyml_optimization,
"--model": None, # I will iterate over this value when
# creating jobs
"--quiet": ""
}
self.models = conf[confname]["_models"]
task_name = "Prottest-[%s]" %','.join(self.models)
ModelTesterTask.__init__(self, nodeid, "mchooser", task_name,
base_args, conf[confname])
if seqtype == "nt":
log.error('Prottest can only be used with amino-acid alignments!')
raise TaskError(self, 'Prottest can only be used with amino-acid alignments!')
self.best_model = None
self.seqtype = "aa"
self.init()
def load_jobs(self):
conf = self.conf
for m in self.models:
args = self.args.copy()
args["--model"] = m
bionj_job = Job(conf["app"]["phyml"], args,
parent_ids=[self.nodeid])
bionj_job.jobname += "-bionj-" + m
bionj_job.jobcat = "bionj"
bionj_job.add_input_file(self.alg_phylip_file, bionj_job.jobdir)
self.jobs.append(bionj_job)
if self.lk_mode == "raxml":
raxml_args = {
"-f": "e",
"-s": pjoin(bionj_job.jobdir, self.alg_phylip_file),
"-m": "PROTGAMMA%s" % m,
"-n": self.alg_phylip_file+"."+m,
"-t": pjoin(bionj_job.jobdir,
self.alg_phylip_file+"_phyml_tree.txt")
}
raxml_job = Job(conf["app"]["raxml"], raxml_args,
parent_ids=[bionj_job.jobid])
raxml_job.jobname += "-lk-optimize"
raxml_job.dependencies.add(bionj_job)
raxml_job.model = m
raxml_job.jobcat = "raxml"
self.jobs.append(raxml_job)
def finish(self):
lks = []
if self.lk_mode == "phyml":
for job in self.jobs:
if job.jobcat != "bionj": continue
phyml_job = job
tree_file = pjoin(phyml_job.jobdir,
self.alg_phylip_file+"_phyml_tree.txt")
stats_file = pjoin(phyml_job.jobdir,
self.alg_phylip_file+"_phyml_stats.txt")
tree = PhyloTree(tree_file)
m = re.search('Log-likelihood:\s+(-?\d+\.\d+)',
open(stats_file).read())
lk = float(m.groups()[0])
tree.add_feature("lk", lk)
tree.add_feature("model", phyml_job.args["--model"])
lks.append([float(tree.lk), tree.model, tree])
elif self.lk_mode == "raxml":
for job in self.jobs:
if job.jobcat != "raxml": continue
raxml_job = job
lk = open(pjoin(raxml_job.jobdir, "RAxML_log.%s"
%raxml_job.args["-n"])).readline().split()[1]
tree = PhyloTree(raxml_job.args["-t"])
tree.add_feature("lk", lk)
tree.add_feature("model", raxml_job.model)
lks.append([float(tree.lk), tree.model, tree])
# sort lks in ASC order
lks.sort()
# choose the model with higher likelihood, the lastone in the list
best_model = lks[-1][1]
best_tree = lks[-1][2]
log.log(22, "%s model selected from the following lk values:\n%s" %(best_model, '\n'.join(map(str, lks))))
ModelTesterTask.store_data(self, best_model, lks)
|