1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
# #START_LICENSE###########################################################
#
#
# This file is part of the Environment for Tree Exploration program
# (ETE). http://etetoolkit.org
#
# ETE is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# ETE is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
# License for more details.
#
# You should have received a copy of the GNU General Public License
# along with ETE. If not, see <http://www.gnu.org/licenses/>.
#
#
# ABOUT THE ETE PACKAGE
# =====================
#
# ETE is distributed under the GPL copyleft license (2008-2015).
#
# If you make use of ETE in published work, please cite:
#
# Jaime Huerta-Cepas, Joaquin Dopazo and Toni Gabaldon.
# ETE: a python Environment for Tree Exploration. Jaime BMC
# Bioinformatics 2010,:24doi:10.1186/1471-2105-11-24
#
# Note that extra references to the specific methods implemented in
# the toolkit may be available in the documentation.
#
# More info at http://etetoolkit.org. Contact: huerta@embl.de
#
#
# #END_LICENSE#############################################################
from __future__ import absolute_import
from __future__ import print_function
from sys import stderr
from . import clustvalidation
from ..coretype.tree import _translate_nodes
from .. import TreeNode, ArrayTable
from .. import numpy
from six.moves import range
__all__ = ["ClusterNode", "ClusterTree"]
class ClusterNode(TreeNode):
""" Creates a new Cluster Tree object, which is a collection
of ClusterNode instances connected in a hierarchical way, and
representing a clustering result.
a newick file or string can be passed as the first argument. An
ArrayTable file or instance can be passed as a second argument.
Examples:
t1 = Tree() # creates an empty tree
t2 = Tree( '(A:1,(B:1,(C:1,D:1):0.5):0.5);' )
t3 = Tree( '/home/user/myNewickFile.txt' )
"""
def _set_forbidden(self, value):
raise ValueError("This attribute can not be manually set.")
def _get_intra(self):
if self._silhouette is None:
self.get_silhouette()
return self._intracluster_dist
def _get_inter(self):
if self._silhouette is None:
self.get_silhouette()
return self._intercluster_dist
def _get_silh(self):
if self._silhouette is None:
self.get_silhouette()
return self._silhouette
def _get_prof(self):
if self._profile is None:
self._calculate_avg_profile()
return self._profile
def _get_std(self):
if self._std_profile is None:
self._calculate_avg_profile()
return self._std_profile
def _set_profile(self, value):
self._profile = value
intracluster_dist = property(fget=_get_intra, fset=_set_forbidden)
intercluster_dist = property(fget=_get_inter, fset=_set_forbidden)
silhouette = property(fget=_get_silh, fset=_set_forbidden)
profile = property(fget=_get_prof, fset=_set_profile)
deviation = property(fget=_get_std, fset=_set_forbidden)
def __init__(self, newick = None, text_array = None, \
fdist=clustvalidation.default_dist):
# Default dist is spearman_dist when scipy module is loaded
# otherwise, it is set to euclidean_dist.
# Initialize basic tree features and loads the newick (if any)
TreeNode.__init__(self, newick)
self._fdist = None
self._silhouette = None
self._intercluster_dist = None
self._intracluster_dist = None
self._profile = None
self._std_profile = None
# Cluster especific features
self.features.add("intercluster_dist")
self.features.add("intracluster_dist")
self.features.add("silhouette")
self.features.add("profile")
self.features.add("deviation")
# Initialize tree with array data
if text_array:
self.link_to_arraytable(text_array)
if newick:
self.set_distance_function(fdist)
def __repr__(self):
return "ClusterTree node (%s)" %hex(self.__hash__())
def set_distance_function(self, fn):
""" Sets the distance function used to calculate cluster
distances and silouette index.
ARGUMENTS:
fn: a pointer to python function acepting two arrays (numpy) as
arguments.
EXAMPLE:
# A simple euclidean distance
my_dist_fn = lambda x,y: abs(x-y)
tree.set_distance_function(my_dist_fn)
"""
for n in self.traverse():
n._fdist = fn
n._silhouette = None
n._intercluster_dist = None
n._intracluster_dist = None
def link_to_arraytable(self, arraytbl):
""" Allows to link a given arraytable object to the tree
structure under this node. Row names in the arraytable object
are expected to match leaf names.
Returns a list of nodes for with profiles could not been found
in arraytable.
"""
# Initialize tree with array data
if type(arraytbl) == ArrayTable:
array = arraytbl
else:
array = ArrayTable(arraytbl)
missing_leaves = []
matrix_values = [i for r in range(len(array.matrix))\
for i in array.matrix[r] if numpy.isfinite(i)]
array._matrix_min = min(matrix_values)
array._matrix_max = max(matrix_values)
for n in self.traverse():
n.arraytable = array
if n.is_leaf() and n.name in array.rowNames:
n._profile = array.get_row_vector(n.name)
elif n.is_leaf():
n._profile = [numpy.nan]*len(array.colNames)
missing_leaves.append(n)
if len(missing_leaves)>0:
print("""[%d] leaf names could not be mapped to the matrix rows.""" %\
len(missing_leaves), file=stderr)
self.arraytable = array
def iter_leaf_profiles(self):
""" Returns an iterator over all the profiles associated to
the leaves under this node."""
for l in self.iter_leaves():
yield l.get_profile()[0]
def get_leaf_profiles(self):
""" Returns the list of all the profiles associated to the
leaves under this node."""
return [l.get_profile()[0] for l in self.iter_leaves()]
def get_silhouette(self, fdist=None):
""" Calculates the node's silhouette value by using a given
distance function. By default, euclidean distance is used. It
also calculates the deviation profile, mean profile, and
inter/intra-cluster distances.
It sets the following features into the analyzed node:
- node.intracluster
- node.intercluster
- node.silhouete
intracluster distances a(i) are calculated as the Centroid
Diameter
intercluster distances b(i) are calculated as the Centroid linkage distance
** Rousseeuw, P.J. (1987) Silhouettes: A graphical aid to the
interpretation and validation of cluster analysis.
J. Comput. Appl. Math., 20, 53-65.
"""
if fdist is None:
fdist = self._fdist
# Updates internal values
self._silhouette, self._intracluster_dist, self._intercluster_dist = \
clustvalidation.get_silhouette_width(fdist, self)
# And returns them
return self._silhouette, self._intracluster_dist, self._intercluster_dist
def get_dunn(self, clusters, fdist=None):
""" Calculates the Dunn index for the given set of descendant
nodes.
"""
if fdist is None:
fdist = self._fdist
nodes = _translate_nodes(self, *clusters)
return clustvalidation.get_dunn_index(fdist, *nodes)
def _calculate_avg_profile(self):
""" This internal function updates the mean profile
associated to an internal node. """
# Updates internal values
self._profile, self._std_profile = clustvalidation.get_avg_profile(self)
# cosmetic alias
#: .. currentmodule:: ete3
#
ClusterTree = ClusterNode
|