1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
# #START_LICENSE###########################################################
#
#
# This file is part of the Environment for Tree Exploration program
# (ETE). http://etetoolkit.org
#
# ETE is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# ETE is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
# License for more details.
#
# You should have received a copy of the GNU General Public License
# along with ETE. If not, see <http://www.gnu.org/licenses/>.
#
#
# ABOUT THE ETE PACKAGE
# =====================
#
# ETE is distributed under the GPL copyleft license (2008-2015).
#
# If you make use of ETE in published work, please cite:
#
# Jaime Huerta-Cepas, Joaquin Dopazo and Toni Gabaldon.
# ETE: a python Environment for Tree Exploration. Jaime BMC
# Bioinformatics 2010,:24doi:10.1186/1471-2105-11-24
#
# Note that extra references to the specific methods implemented in
# the toolkit may be available in the documentation.
#
# More info at http://etetoolkit.org. Contact: huerta@embl.de
#
#
# #END_LICENSE#############################################################
from __future__ import absolute_import
from .. import numpy
from math import sqrt
from six.moves import range
def safe_mean(values):
""" Returns mean value discarding non finite values """
valid_values = []
for v in values:
if numpy.isfinite(v):
valid_values.append(v)
return numpy.mean(valid_values), numpy.std(valid_values)
def safe_mean_vector(vectors):
""" Returns mean profile discarding non finite values.
"""
# if only one vector, avg = itself
if len(vectors)==1:
return vectors[0], numpy.zeros(len(vectors[0]))
# Takes the vector length form the first item
length = len(vectors[0])
safe_mean = []
safe_std = []
for pos in range(length):
pos_mean = []
for v in vectors:
if numpy.isfinite(v[pos]):
pos_mean.append(v[pos])
safe_mean.append(numpy.mean(pos_mean))
safe_std.append(numpy.std(pos_mean))
return numpy.array(safe_mean), numpy.array(safe_std)
def get_silhouette_width(fdist, cluster):
sisters = cluster.get_sisters()
# Calculates silhouette
silhouette = []
intra_dist = []
inter_dist = []
for st in sisters:
if st.profile is None:
continue
for i in cluster.iter_leaves():
# Skip nodes without profile
if i._profile is not None:
# item intraclsuterdist -> Centroid Diameter
a = fdist(i.profile, cluster.profile)*2
# intracluster dist -> Centroid Linkage
b = fdist(i.profile, st.profile)
if (b-a) == 0.0:
s = 0.0
else:
s = (b-a) / max(a,b)
intra_dist.append(a)
inter_dist.append(b)
silhouette.append(s)
silhouette, std = safe_mean(silhouette)
intracluster_dist, std = safe_mean(intra_dist)
intercluster_dist, std = safe_mean(inter_dist)
return silhouette, intracluster_dist, intercluster_dist
def get_avg_profile(node):
""" This internal function updates the mean profile
associated to an internal node. """
if not node.is_leaf():
leaf_vectors = [n._profile for n in node.get_leaves() \
if n._profile is not None]
if len(leaf_vectors)>0:
node._profile, node._std_profile = safe_mean_vector(leaf_vectors)
else:
node._profile, node._std_profile = None, None
return node._profile, node._std_profile
else:
node._std_profile = [0.0]*len(node._profile)
return node._profile, [0.0]*len(node._profile)
def get_dunn_index(fdist, *clusters):
"""
Returns the Dunn index for the given selection of nodes.
J.C. Dunn. Well separated clusters and optimal fuzzy
partitions. 1974. J.Cybern. 4. 95-104.
"""
if len(clusters)<2:
raise ValueError("At least 2 clusters are required")
intra_dist = []
for c in clusters:
for i in c.get_leaves():
if i is not None:
# item intraclsuterdist -> Centroid Diameter
a = fdist(i.profile, c.profile)*2
intra_dist.append(a)
max_a = numpy.max(intra_dist)
inter_dist = []
for i, ci in enumerate(clusters):
for cj in clusters[i+1:]:
# intracluster dist -> Centroid Linkage
b = fdist(ci.profile, cj.profile)
inter_dist.append(b)
min_b = numpy.min(inter_dist)
if max_a == 0.0:
D = 0.0
else:
D = min_b / max_a
return D
# ####################
# distance functions
# ####################
def pearson_dist(v1, v2):
try:
from scipy.stats import pearsonr
except ImportError:
raise RuntimeError("scipy is required to execute this function. Please install it an try again")
if (v1 == v2).all():
return 0.0
else:
return 1.0 - pearsonr(list(v1), list(v2))[0]
def spearman_dist(v1, v2):
try:
from scipy.stats import spearmanr
except ImportError:
raise RuntimeError("scipy is required to execute this function. Please install it an try again")
if (v1 == v2).all():
return 0.0
else:
return 1.0 - spearmanr(list(v1), list(v2))[0]
def euclidean_dist(v1, v2):
if (v1 == v2).all():
return 0.0
else:
return sqrt( square_euclidean_dist(v1,v2) )
def square_euclidean_dist(v1,v2):
if (v1 == v2).all():
return 0.0
valids = 0
distance= 0.0
for i in range(len(v1)):
if numpy.isfinite(v1[i]) and numpy.isfinite(v2[i]):
valids += 1
d = v1[i]-v2[i]
distance += d*d
if valids==0:
raise ValueError("Cannot calculate values")
return distance/valids
default_dist = spearman_dist
|