File: ncbiquery.py

package info (click to toggle)
python-ete3 3.1.2%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,148 kB
  • sloc: python: 52,375; javascript: 12,959; xml: 4,903; ansic: 69; sql: 65; makefile: 26; sh: 7
file content (870 lines) | stat: -rw-r--r-- 32,938 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
#!/usr/bin/env python
# -*- coding: utf-8 -*-

# #START_LICENSE###########################################################
#
#
# This file is part of the Environment for Tree Exploration program
# (ETE).  http://etetoolkit.org
#
# ETE is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# ETE is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
# License for more details.
#
# You should have received a copy of the GNU General Public License
# along with ETE.  If not, see <http://www.gnu.org/licenses/>.
#
#
#                     ABOUT THE ETE PACKAGE
#                     =====================
#
# ETE is distributed under the GPL copyleft license (2008-2015).
#
# If you make use of ETE in published work, please cite:
#
# Jaime Huerta-Cepas, Joaquin Dopazo and Toni Gabaldon.
# ETE: a python Environment for Tree Exploration. Jaime BMC
# Bioinformatics 2010,:24doi:10.1186/1471-2105-11-24
#
# Note that extra references to the specific methods implemented in
# the toolkit may be available in the documentation.
#
# More info at http://etetoolkit.org. Contact: huerta@embl.de
#
#
# #END_LICENSE#############################################################


from __future__ import absolute_import
from __future__ import print_function
import sys
import os
try:
    import cPickle as pickle
except ImportError:
    # python 3 support
    import pickle

from collections import defaultdict, Counter

from hashlib import md5

import sqlite3
import math
import tarfile
import six
from six.moves import map
import warnings


__all__ = ["NCBITaxa", "is_taxadb_up_to_date"]

DB_VERSION = 2
DEFAULT_TAXADB = os.path.join(os.environ.get('HOME', '/'), '.etetoolkit', 'taxa.sqlite')


def is_taxadb_up_to_date(dbfile=DEFAULT_TAXADB):
    """Check if a valid and up-to-date taxa.sqlite database exists

    If dbfile= is not specified, DEFAULT_TAXADB is assumed
    """
    db = sqlite3.connect(dbfile)

    try:
        r = db.execute('SELECT version FROM stats;')
        version = r.fetchone()[0]
    except (sqlite3.OperationalError, ValueError, IndexError, TypeError):
        version = None

    db.close()

    if version != DB_VERSION:
        return False

    return True


class NCBITaxa(object):
    """
    versionadded: 2.3

    Provides a local transparent connector to the NCBI taxonomy database.
    """

    def __init__(self, dbfile=None, taxdump_file=None):

        if not dbfile:
            self.dbfile = DEFAULT_TAXADB
        else:
            self.dbfile = dbfile

        if taxdump_file:
            self.update_taxonomy_database(taxdump_file)

        if dbfile is None and not os.path.exists(self.dbfile):
            print('NCBI database not present yet (first time used?)', file=sys.stderr)
            self.update_taxonomy_database(taxdump_file)

        if not os.path.exists(self.dbfile):
            raise ValueError("Cannot open taxonomy database: %s" % self.dbfile)

        self.db = None
        self._connect()

        if not is_taxadb_up_to_date(self.dbfile):
            print('NCBI database format is outdated. Upgrading', file=sys.stderr)
            self.update_taxonomy_database(taxdump_file)

    def update_taxonomy_database(self, taxdump_file=None):
        """Updates the ncbi taxonomy database by downloading and parsing the latest
        taxdump.tar.gz file from the NCBI FTP site (via HTTP).

        :param None taxdump_file: an alternative location of the taxdump.tax.gz file.
        """
        if not taxdump_file:
            update_db(self.dbfile)
        else:
            update_db(self.dbfile, taxdump_file)

    def _connect(self):
        self.db = sqlite3.connect(self.dbfile)

    def _translate_merged(self, all_taxids):
        conv_all_taxids = set((list(map(int, all_taxids))))
        cmd = 'select taxid_old, taxid_new FROM merged WHERE taxid_old IN (%s)' %','.join(map(str, all_taxids))

        result = self.db.execute(cmd)
        conversion = {}
        for old, new in result.fetchall():
            conv_all_taxids.discard(int(old))
            conv_all_taxids.add(int(new))
            conversion[int(old)] = int(new)
        return conv_all_taxids, conversion


    def get_fuzzy_name_translation(self, name, sim=0.9):
        '''
        Given an inexact species name, returns the best match in the NCBI database of taxa names.

        :argument 0.9 sim: Min word similarity to report a match (from 0 to 1).

        :return: taxid, species-name-match, match-score
        '''


        import sqlite3.dbapi2 as dbapi2
        _db = dbapi2.connect(self.dbfile)
        _db.enable_load_extension(True)
        module_path = os.path.split(os.path.realpath(__file__))[0]
        _db.execute("select load_extension('%s')" % os.path.join(module_path,
                                                                 "SQLite-Levenshtein/levenshtein.sqlext"))

        print("Trying fuzzy search for %s" % name)
        maxdiffs = math.ceil(len(name) * (1-sim))
        cmd = 'SELECT taxid, spname, LEVENSHTEIN(spname, "%s") AS sim  FROM species WHERE sim<=%s ORDER BY sim LIMIT 1;' % (name, maxdiffs)
        taxid, spname, score = None, None, len(name)
        result = _db.execute(cmd)
        try:
            taxid, spname, score = result.fetchone()
        except TypeError:
            cmd = 'SELECT taxid, spname, LEVENSHTEIN(spname, "%s") AS sim  FROM synonym WHERE sim<=%s ORDER BY sim LIMIT 1;' % (name, maxdiffs)
            result = _db.execute(cmd)
            try:
                taxid, spname, score = result.fetchone()
            except:
                pass
            else:
                taxid = int(taxid)
        else:
            taxid = int(taxid)

        norm_score = 1 - (float(score)/len(name))
        if taxid:
            print("FOUND!    %s taxid:%s score:%s (%s)" %(spname, taxid, score, norm_score))

        return taxid, spname, norm_score

    def get_rank(self, taxids):
        'return a dictionary converting a list of taxids into their corresponding NCBI taxonomy rank'

        all_ids = set(taxids)
        all_ids.discard(None)
        all_ids.discard("")
        query = ','.join(['"%s"' %v for v in all_ids])
        cmd = "select taxid, rank FROM species WHERE taxid IN (%s);" %query
        result = self.db.execute(cmd)
        id2rank = {}
        for tax, spname in result.fetchall():
            id2rank[tax] = spname
        return id2rank

    def get_lineage_translator(self, taxids):
        """Given a valid taxid number, return its corresponding lineage track as a
        hierarchically sorted list of parent taxids.
        """
        all_ids = set(taxids)
        all_ids.discard(None)
        all_ids.discard("")
        query = ','.join(['"%s"' %v for v in all_ids])
        result = self.db.execute('SELECT taxid, track FROM species WHERE taxid IN (%s);' %query)
        id2lineages = {}
        for tax, track in result.fetchall():
            id2lineages[tax] = list(map(int, reversed(track.split(","))))

        return id2lineages


    def get_lineage(self, taxid):
        """Given a valid taxid number, return its corresponding lineage track as a
        hierarchically sorted list of parent taxids.
        """
        if not taxid:
            return None
        taxid = int(taxid)
        result = self.db.execute('SELECT track FROM species WHERE taxid=%s' %taxid)
        raw_track = result.fetchone()
        if not raw_track:
            #perhaps is an obsolete taxid
            _, merged_conversion = self._translate_merged([taxid])
            if taxid in merged_conversion:
                result = self.db.execute('SELECT track FROM species WHERE taxid=%s' %merged_conversion[taxid])
                raw_track = result.fetchone()
            # if not raise error
            if not raw_track:
                #raw_track = ["1"]
                raise ValueError("%s taxid not found" %taxid)
            else:
                warnings.warn("taxid %s was translated into %s" %(taxid, merged_conversion[taxid]))

        track = list(map(int, raw_track[0].split(",")))
        return list(reversed(track))

    def get_common_names(self, taxids):
        query = ','.join(['"%s"' %v for v in taxids])
        cmd = "select taxid, common FROM species WHERE taxid IN (%s);" %query
        result = self.db.execute(cmd)
        id2name = {}
        for tax, common_name in result.fetchall():
            if common_name:
                id2name[tax] = common_name
        return id2name

    def get_taxid_translator(self, taxids, try_synonyms=True):
        """Given a list of taxids, returns a dictionary with their corresponding
        scientific names.
        """

        all_ids = set(map(int, taxids))
        all_ids.discard(None)
        all_ids.discard("")
        query = ','.join(['"%s"' %v for v in all_ids])
        cmd = "select taxid, spname FROM species WHERE taxid IN (%s);" %query
        result = self.db.execute(cmd)
        id2name = {}
        for tax, spname in result.fetchall():
            id2name[tax] = spname

        # any taxid without translation? lets tray in the merged table
        if len(all_ids) != len(id2name) and try_synonyms:
            not_found_taxids = all_ids - set(id2name.keys())
            taxids, old2new = self._translate_merged(not_found_taxids)
            new2old = {v: k for k,v in six.iteritems(old2new)}

            if old2new:
                query = ','.join(['"%s"' %v for v in new2old])
                cmd = "select taxid, spname FROM species WHERE taxid IN (%s);" %query
                result = self.db.execute(cmd)
                for tax, spname in result.fetchall():
                    id2name[new2old[tax]] = spname

        return id2name

    def get_name_translator(self, names):
        """
        Given a list of taxid scientific names, returns a dictionary translating them into their corresponding taxids.

        Exact name match is required for translation.
        """

        name2id = {}
        #name2realname = {}
        name2origname = {}
        for n in names:
            name2origname[n.lower()] = n

        names = set(name2origname.keys())

        query = ','.join(['"%s"' %n for n in six.iterkeys(name2origname)])
        cmd = 'select spname, taxid from species where spname IN (%s)' %query
        result = self.db.execute('select spname, taxid from species where spname IN (%s)' %query)
        for sp, taxid in result.fetchall():
            oname = name2origname[sp.lower()]
            name2id.setdefault(oname, []).append(taxid)
            #name2realname[oname] = sp
        missing =  names - set([n.lower() for n in name2id.keys()])
        if missing:
            query = ','.join(['"%s"' %n for n in missing])
            result = self.db.execute('select spname, taxid from synonym where spname IN (%s)' %query)
            for sp, taxid in result.fetchall():
                oname = name2origname[sp.lower()]
                name2id.setdefault(oname, []).append(taxid)
                #name2realname[oname] = sp
        return name2id

    def translate_to_names(self, taxids):
        """
        Given a list of taxid numbers, returns another list with their corresponding scientific names.
        """
        id2name = self.get_taxid_translator(taxids)
        names = []
        for sp in taxids:
            names.append(id2name.get(sp, sp))
        return names


    def get_descendant_taxa(self, parent, intermediate_nodes=False, rank_limit=None, collapse_subspecies=False, return_tree=False):
        """
        given a parent taxid or scientific species name, returns a list of all its descendants taxids.
        If intermediate_nodes is set to True, internal nodes will also be dumped.

        """
        try:
            taxid = int(parent)
        except ValueError:
            try:
                taxid = self.get_name_translator([parent])[parent][0]
            except KeyError:
                raise ValueError('%s not found!' %parent)

        # checks if taxid is a deprecated one, and converts into the right one.
        _, conversion = self._translate_merged([taxid]) #try to find taxid in synonyms table
        if conversion:
            taxid = conversion[taxid]

        with open(self.dbfile+".traverse.pkl", "rb") as CACHED_TRAVERSE:
            prepostorder = pickle.load(CACHED_TRAVERSE)
        descendants = {}
        found = 0
        for tid in prepostorder:
            if tid == taxid:
                found += 1
            elif found == 1:
                descendants[tid] = descendants.get(tid, 0) + 1
            elif found == 2:
                break

        if not found:
            raise ValueError("taxid not found:%s" %taxid)
        elif found == 1:
            return [taxid]

        if rank_limit or collapse_subspecies or return_tree:
            tree = self.get_topology(list(descendants.keys()), intermediate_nodes=intermediate_nodes, collapse_subspecies=collapse_subspecies, rank_limit=rank_limit)
            if return_tree:
                return tree
            elif intermediate_nodes:
                return list(map(int, [n.name for n in tree.get_descendants()]))
            else:
                return map(int, [n.name for n in tree])

        elif intermediate_nodes:
            return [tid for tid, count in six.iteritems(descendants)]
        else:
            return [tid for tid, count in six.iteritems(descendants) if count == 1]

    def get_topology(self, taxids, intermediate_nodes=False, rank_limit=None, collapse_subspecies=False, annotate=True):
        """Given a list of taxid numbers, return the minimal pruned NCBI taxonomy tree
        containing all of them.

        :param False intermediate_nodes: If True, single child nodes
            representing the complete lineage of leaf nodes are kept.
            Otherwise, the tree is pruned to contain the first common
            ancestor of each group.

        :param None rank_limit: If valid NCBI rank name is provided,
            the tree is pruned at that given level. For instance, use
            rank="species" to get rid of sub-species or strain leaf
            nodes.

        :param False collapse_subspecies: If True, any item under the
            species rank will be collapsed into the species upper
            node.

        """
        from .. import PhyloTree
        taxids, merged_conversion = self._translate_merged(taxids)
        if len(taxids) == 1:
            root_taxid = int(list(taxids)[0])
            with open(self.dbfile+".traverse.pkl", "rb") as CACHED_TRAVERSE:
                prepostorder = pickle.load(CACHED_TRAVERSE)
            descendants = {}
            found = 0
            nodes = {}
            hit = 0
            visited = set()
            start = prepostorder.index(root_taxid)
            try:
            	end = prepostorder.index(root_taxid, start+1)
            	subtree = prepostorder[start:end+1]
            except ValueError:
                # If root taxid is not found in postorder, must be a tip node
            	subtree = [root_taxid]
            leaves = set([v for v, count in Counter(subtree).items() if count == 1])
            nodes[root_taxid] = PhyloTree(name=str(root_taxid))
            current_parent = nodes[root_taxid]
            for tid in subtree:
                if tid in visited:
                    current_parent = nodes[tid].up
                else:
                    visited.add(tid)
                    nodes[tid] = PhyloTree(name=str(tid))
                    current_parent.add_child(nodes[tid])
                    if tid not in leaves:
                        current_parent = nodes[tid]
            root = nodes[root_taxid]
        else:
            taxids = set(map(int, taxids))
            sp2track = {}
            elem2node = {}
            id2lineage = self.get_lineage_translator(taxids)
            all_taxids = set()
            for lineage in id2lineage.values():
                all_taxids.update(lineage)
            id2rank = self.get_rank(all_taxids)
            for sp in taxids:
                track = []
                lineage = id2lineage[sp]

                for elem in lineage:
                    if elem not in elem2node:
                        node = elem2node.setdefault(elem, PhyloTree())
                        node.name = str(elem)
                        node.taxid = elem
                        node.add_feature("rank", str(id2rank.get(int(elem), "no rank")))
                    else:
                        node = elem2node[elem]
                    track.append(node)
                sp2track[sp] = track
            # generate parent child relationships
            for sp, track in six.iteritems(sp2track):
                parent = None
                for elem in track:
                    if parent and elem not in parent.children:
                        parent.add_child(elem)
                    if rank_limit and elem.rank == rank_limit:
                        break
                    parent = elem
            root = elem2node[1]

        #remove onechild-nodes
        if not intermediate_nodes:
            for n in root.get_descendants():
                if len(n.children) == 1 and int(n.name) not in taxids:
                    n.delete(prevent_nondicotomic=False)

        if len(root.children) == 1:
            tree = root.children[0].detach()
        else:
            tree = root

        if collapse_subspecies:
            to_detach = []
            for node in tree.traverse():
                if node.rank == "species":
                    to_detach.extend(node.children)
            for n in to_detach:
                n.detach()

        if annotate:
            self.annotate_tree(tree)

        return tree


    def annotate_tree(self, t, taxid_attr="name", tax2name=None, tax2track=None, tax2rank=None):
        """Annotate a tree containing taxids as leaf names by adding the  'taxid',
        'sci_name', 'lineage', 'named_lineage' and 'rank' additional attributes.

        :param t: a Tree (or Tree derived) instance.

        :param name taxid_attr: Allows to set a custom node attribute
            containing the taxid number associated to each node (i.e.
            species in PhyloTree instances).

        :param tax2name,tax2track,tax2rank: Use these arguments to
            provide pre-calculated dictionaries providing translation
            from taxid number and names,track lineages and ranks.
        """

        taxids = set()
        for n in t.traverse():
            try:
                tid = int(getattr(n, taxid_attr))
            except (ValueError,AttributeError):
                pass
            else:
                taxids.add(tid)
        merged_conversion = {}

        taxids, merged_conversion = self._translate_merged(taxids)

        if not tax2name or taxids - set(map(int, list(tax2name.keys()))):
            tax2name = self.get_taxid_translator(taxids)
        if not tax2track or taxids - set(map(int, list(tax2track.keys()))):
            tax2track = self.get_lineage_translator(taxids)

        all_taxid_codes = set([_tax for _lin in list(tax2track.values()) for _tax in _lin])
        extra_tax2name = self.get_taxid_translator(list(all_taxid_codes - set(tax2name.keys())))
        tax2name.update(extra_tax2name)

        tax2common_name = self.get_common_names(tax2name.keys())

        if not tax2rank:
            tax2rank = self.get_rank(list(tax2name.keys()))

        n2leaves = t.get_cached_content()

        for n in t.traverse('postorder'):
            try:
                node_taxid = int(getattr(n, taxid_attr))
            except (ValueError, AttributeError):
                node_taxid = None

            n.add_features(taxid = node_taxid)
            if node_taxid:
                if node_taxid in merged_conversion:
                    node_taxid = merged_conversion[node_taxid]
                n.add_features(sci_name = tax2name.get(node_taxid, getattr(n, taxid_attr, '')),
                               common_name = tax2common_name.get(node_taxid, ''),
                               lineage = tax2track.get(node_taxid, []),
                               rank = tax2rank.get(node_taxid, 'Unknown'),
                               named_lineage = [tax2name.get(tax, str(tax)) for tax in tax2track.get(node_taxid, [])])
            elif n.is_leaf():
                n.add_features(sci_name = getattr(n, taxid_attr, 'NA'),
                               common_name = '',
                               lineage = [],
                               rank = 'Unknown',
                               named_lineage = [])
            else:
                lineage = self._common_lineage([lf.lineage for lf in n2leaves[n]])
                ancestor = lineage[-1]
                n.add_features(sci_name = tax2name.get(ancestor, str(ancestor)),
                               common_name = tax2common_name.get(ancestor, ''),
                               taxid = ancestor,
                               lineage = lineage,
                               rank = tax2rank.get(ancestor, 'Unknown'),
                               named_lineage = [tax2name.get(tax, str(tax)) for tax in lineage])

        return tax2name, tax2track, tax2rank

    def _common_lineage(self, vectors):
        occurrence = defaultdict(int)
        pos = defaultdict(set)
        for v in vectors:
            for i, taxid in enumerate(v):
                occurrence[taxid] += 1
                pos[taxid].add(i)

        common = [taxid for taxid, ocu in six.iteritems(occurrence) if ocu == len(vectors)]
        if not common:
            return [""]
        else:
            sorted_lineage = sorted(common, key=lambda x: min(pos[x]))
            return sorted_lineage

        # OLD APPROACH:

        # visited = defaultdict(int)
        # for index, name in [(ei, e) for v in vectors for ei, e in enumerate(v)]:
        #     visited[(name, index)] += 1

        # def _sort(a, b):
        #     if a[1] > b[1]:
        #         return 1
        #     elif a[1] < b[1]:
        #         return -1
        #     else:
        #         if a[0][1] > b[0][1]:
        #             return 1
        #         elif a[0][1] < b[0][1]:
        #             return -1
        #     return 0

        # matches = sorted(visited.items(), _sort)

        # if matches:
        #     best_match = matches[-1]
        # else:
        #     return "", set()

        # if best_match[1] != len(vectors):
        #     return "", set()
        # else:
        #     return best_match[0][0], [m[0][0] for m in matches if m[1] == len(vectors)]


    def get_broken_branches(self, t, taxa_lineages, n2content=None):
        """Returns a list of NCBI lineage names that are not monophyletic in the
        provided tree, as well as the list of affected branches and their size.

        CURRENTLY EXPERIMENTAL

        """
        if not n2content:
            n2content = t.get_cached_content()

        tax2node = defaultdict(set)

        unknown = set()
        for leaf in t.iter_leaves():
            if leaf.sci_name.lower() != "unknown":
                lineage = taxa_lineages[leaf.taxid]
                for index, tax in enumerate(lineage):
                    tax2node[tax].add(leaf)
            else:
                unknown.add(leaf)

        broken_branches = defaultdict(set)
        broken_clades = set()
        for tax, leaves in six.iteritems(tax2node):
            if len(leaves) > 1:
                common = t.get_common_ancestor(leaves)
            else:
                common = list(leaves)[0]
            if (leaves ^ set(n2content[common])) - unknown:
                broken_branches[common].add(tax)
                broken_clades.add(tax)

        broken_clade_sizes = [len(tax2node[tax]) for tax in broken_clades]
        return broken_branches, broken_clades, broken_clade_sizes


    # def annotate_tree_with_taxa(self, t, name2taxa_file, tax2name=None, tax2track=None, attr_name="name"):
    #     if name2taxa_file:
    #         names2taxid = dict([map(strip, line.split("\t"))
    #                             for line in open(name2taxa_file)])
    #     else:
    #         names2taxid = dict([(n.name, getattr(n, attr_name)) for n in t.iter_leaves()])

    #     not_found = 0
    #     for n in t.iter_leaves():
    #         n.add_features(taxid=names2taxid.get(n.name, 0))
    #         n.add_features(species=n.taxid)
    #         if n.taxid == 0:
    #             not_found += 1
    #     if not_found:
    #         print >>sys.stderr, "WARNING: %s nodes where not found within NCBI taxonomy!!" %not_found

    #     return self.annotate_tree(t, tax2name, tax2track, attr_name="taxid")


def load_ncbi_tree_from_dump(tar):
    from .. import Tree
    # Download: http://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz
    parent2child = {}
    name2node = {}
    node2taxname = {}
    synonyms = set()
    name2rank = {}
    node2common = {}
    print("Loading node names...")
    unique_nocase_synonyms = set()
    for line in tar.extractfile("names.dmp"):
        line = str(line.decode())
        fields =  [_f.strip() for _f in line.split("|")]
        nodename = fields[0]
        name_type = fields[3].lower()
        taxname = fields[1]

        # Clean up tax names so we make sure the don't include quotes. See https://github.com/etetoolkit/ete/issues/469
        taxname = taxname.rstrip('"').lstrip('"')

        if name_type == "scientific name":
            node2taxname[nodename] = taxname
        if name_type == "genbank common name":
            node2common[nodename] = taxname
        elif name_type in set(["synonym", "equivalent name", "genbank equivalent name",
                               "anamorph", "genbank synonym", "genbank anamorph", "teleomorph"]):

            # Keep track synonyms, but ignore duplicate case-insensitive names. See https://github.com/etetoolkit/ete/issues/469
            synonym_key = (nodename, taxname.lower())
            if synonym_key not in unique_nocase_synonyms:
                unique_nocase_synonyms.add(synonym_key)
                synonyms.add((nodename, taxname))

    print(len(node2taxname), "names loaded.")
    print(len(synonyms), "synonyms loaded.")

    print("Loading nodes...")
    for line in tar.extractfile("nodes.dmp"):
        line = str(line.decode())
        fields =  line.split("|")
        nodename = fields[0].strip()
        parentname = fields[1].strip()
        n = Tree()
        n.name = nodename
        n.taxname = node2taxname[nodename]
        if nodename in node2common:
            n.common_name = node2common[nodename]
        n.rank = fields[2].strip()
        parent2child[nodename] = parentname
        name2node[nodename] = n
    print(len(name2node), "nodes loaded.")

    print("Linking nodes...")
    for node in name2node:
       if node == "1":
           t = name2node[node]
       else:
           parent = parent2child[node]
           parent_node = name2node[parent]
           parent_node.add_child(name2node[node])
    print("Tree is loaded.")
    return t, synonyms

def generate_table(t):
    OUT = open("taxa.tab", "w")
    for j, n in enumerate(t.traverse()):
        if j%1000 == 0:
            print("\r",j,"generating entries...", end=' ')
        temp_node = n
        track = []
        while temp_node:
            track.append(temp_node.name)
            temp_node = temp_node.up
        if n.up:
            print('\t'.join([n.name, n.up.name, n.taxname, getattr(n, "common_name", ""), n.rank, ','.join(track)]), file=OUT)
        else:
            print('\t'.join([n.name, "", n.taxname, getattr(n, "common_name", ""), n.rank, ','.join(track)]), file=OUT)
    OUT.close()

def update_db(dbfile, targz_file=None):
    basepath = os.path.split(dbfile)[0]
    if basepath and not os.path.exists(basepath):
        os.mkdir(basepath)

    if not targz_file:
        try:
            from urllib import urlretrieve
        except ImportError:
            from urllib.request import urlretrieve

        (md5_filename, _) = urlretrieve("https://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz.md5")
        with open(md5_filename, "r") as md5_file:
            md5_check = md5_file.readline().split()[0]
        targz_file = "taxdump.tar.gz"
        do_download = False

        if os.path.exists("taxdump.tar.gz"):
            local_md5 = md5(open("taxdump.tar.gz", "rb").read()).hexdigest()
            if local_md5 != md5_check:
                do_download = True
                print('Updating taxdump.tar.gz from NCBI FTP site (via HTTP)...', file=sys.stderr)
                urlretrieve("http://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz", targz_file)
                print('Done. Parsing...', file=sys.stderr)
            else:
                print('Local taxdump.tar.gz seems up-to-date', file=sys.stderr)
        else:
            do_download = True
            print('Downloading taxdump.tar.gz from NCBI FTP site (via HTTP)...', file=sys.stderr)
            urlretrieve("http://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz", targz_file)
            print('Done. Parsing...', file=sys.stderr)

    tar = tarfile.open(targz_file, 'r')
    t, synonyms = load_ncbi_tree_from_dump(tar)
    prepostorder = [int(node.name) for post, node in t.iter_prepostorder()]
    pickle.dump(prepostorder, open(dbfile+'.traverse.pkl', "wb"), 2)

    print("Updating database: %s ..." %dbfile)
    generate_table(t)

    with open("syn.tab", "w") as SYN:
        SYN.write('\n'.join(["%s\t%s" %(v[0],v[1]) for v in synonyms]))

    with open("merged.tab", "w") as merged:
        for line in tar.extractfile("merged.dmp"):
            line = str(line.decode())
            out_line = '\t'.join([_f.strip() for _f in line.split('|')[:2]])
            merged.write(out_line+'\n')
    try:
        upload_data(dbfile)
    except:
        raise
    else:
        os.system("rm syn.tab merged.tab taxa.tab")
        # remove only downloaded taxdump file
        if not targz_file:
            os.system("rm taxdump.tar.gz")

def upload_data(dbfile):
    print()
    print('Uploading to', dbfile)
    basepath = os.path.split(dbfile)[0]
    if basepath and not os.path.exists(basepath):
        os.mkdir(basepath)

    db = sqlite3.connect(dbfile)

    create_cmd = """
    DROP TABLE IF EXISTS stats;
    DROP TABLE IF EXISTS species;
    DROP TABLE IF EXISTS synonym;
    DROP TABLE IF EXISTS merged;
    CREATE TABLE stats (version INT PRIMARY KEY);
    CREATE TABLE species (taxid INT PRIMARY KEY, parent INT, spname VARCHAR(50) COLLATE NOCASE, common VARCHAR(50) COLLATE NOCASE, rank VARCHAR(50), track TEXT);
    CREATE TABLE synonym (taxid INT,spname VARCHAR(50) COLLATE NOCASE, PRIMARY KEY (spname, taxid));
    CREATE TABLE merged (taxid_old INT, taxid_new INT);
    CREATE INDEX spname1 ON species (spname COLLATE NOCASE);
    CREATE INDEX spname2 ON synonym (spname COLLATE NOCASE);
    """
    for cmd in create_cmd.split(';'):
        db.execute(cmd)
    print()

    db.execute("INSERT INTO stats (version) VALUES (%d);" %DB_VERSION)
    db.commit()

    for i, line in enumerate(open("syn.tab")):
        if i%5000 == 0 :
            print('\rInserting synonyms:     % 6d' %i, end=' ', file=sys.stderr)
            sys.stderr.flush()
        taxid, spname = line.strip('\n').split('\t')
        db.execute("INSERT INTO synonym (taxid, spname) VALUES (?, ?);", (taxid, spname))
    print()
    db.commit()
    for i, line in enumerate(open("merged.tab")):
        if i%5000 == 0 :
            print('\rInserting taxid merges: % 6d' %i, end=' ', file=sys.stderr)
            sys.stderr.flush()
        taxid_old, taxid_new = line.strip('\n').split('\t')
        db.execute("INSERT INTO merged (taxid_old, taxid_new) VALUES (?, ?);", (taxid_old, taxid_new))
    print()
    db.commit()
    for i, line in enumerate(open("taxa.tab")):
        if i%5000 == 0 :
            print('\rInserting taxids:      % 6d' %i, end=' ', file=sys.stderr)
            sys.stderr.flush()
        taxid, parentid, spname, common, rank, lineage = line.strip('\n').split('\t')
        db.execute("INSERT INTO species (taxid, parent, spname, common, rank, track) VALUES (?, ?, ?, ?, ?, ?);", (taxid, parentid, spname, common, rank, lineage))
    print()
    db.commit()

if __name__ == "__main__":
    ncbi = NCBITaxa()

    a = ncbi.get_descendant_taxa("hominidae")
    print(a)
    print(ncbi.get_common_names(a))
    print(ncbi.get_topology(a))
    b = ncbi.get_descendant_taxa("homo", intermediate_nodes=True, collapse_subspecies=True)
    print(ncbi.get_taxid_translator(b))

    print(ncbi.get_common_names(b))
    #ncbi.update_taxonomy_database()