1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
|
# #START_LICENSE###########################################################
#
#
# This file is part of the Environment for Tree Exploration program
# (ETE). http://etetoolkit.org
#
# ETE is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# ETE is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
# License for more details.
#
# You should have received a copy of the GNU General Public License
# along with ETE. If not, see <http://www.gnu.org/licenses/>.
#
#
# ABOUT THE ETE PACKAGE
# =====================
#
# ETE is distributed under the GPL copyleft license (2008-2015).
#
# If you make use of ETE in published work, please cite:
#
# Jaime Huerta-Cepas, Joaquin Dopazo and Toni Gabaldon.
# ETE: a python Environment for Tree Exploration. Jaime BMC
# Bioinformatics 2010,:24doi:10.1186/1471-2105-11-24
#
# Note that extra references to the specific methods implemented in
# the toolkit may be available in the documentation.
#
# More info at http://etetoolkit.org. Contact: huerta@embl.de
#
#
# #END_LICENSE#############################################################
"""
This module defines the PhyloNode dataytype to manage phylogenetic
trees. It inheritates the coretype TreeNode and add some special
features to the the node instances.
"""
from __future__ import absolute_import
from __future__ import print_function
import sys
import os
import re
import itertools
from collections import defaultdict
from .. import TreeNode, SeqGroup, NCBITaxa
from .reconciliation import get_reconciled_tree
from . import spoverlap
__all__ = ["PhyloNode", "PhyloTree"]
def _parse_species(name):
return name[:3]
def is_dup(n):
return getattr(n, "evoltype", None) == "D"
def get_subtrees(tree, full_copy=False, features=None, newick_only=False):
"""Calculate all possible species trees within a gene tree. I
tested several recursive and iterative approaches to do it and
this is the most efficient way I found. The method is now fast and
light enough to deal with very large gene trees, and it scales
linearly instead of exponentially. For instance, a tree with ~8000
nodes, ~100 species and ~400 duplications returns ~10,000 sptrees
that could be loaded in few minutes.
To avoid memory overloads, this function returns a tuple containing the
total number of trees, number of duplication events, and an iterator for the
species trees. Real trees are not actually computed until the iterator is
first accessed. This allows to filter out cases producing astronomic numbers
of sptrees.
"""
ntrees, ndups = calc_subtrees(tree)
return ntrees, ndups, _get_subtrees(tree, full_copy, features, newick_only)
def _get_subtrees(tree, full_copy=False, features=None, newick_only=False):
# First I need to precalculate all the species trees in tuple (newick) format
nid = 0
n2nid = {}
nid2node = {}
n2subtrees = defaultdict(list)
for n in tree.traverse("postorder"):
n2nid[n] = nid
nid2node[nid] = n
nid += 1
if n.children:
if is_dup(n):
subtrees = []
for ch in n.children:
subtrees.extend(n2subtrees[n2nid[ch]])
else:
subtrees = tuple([val for val in
itertools.product(n2subtrees[n2nid[n.children[0]]],
n2subtrees[n2nid[n.children[1]]])])
else:
subtrees = tuple([n2nid[n]])
n2subtrees[n2nid[n]] = subtrees
for ch in n.children:
del n2subtrees[n2nid[ch]]
sp_trees = n2subtrees[n2nid[tree]]
# Second, I yield a tree per iteration in newick or ETE format
features = set(features) if features else set()
features.update(["name"])
def _nodereplacer(match):
pre, b, post = match.groups()
pre = '' if not pre else pre
post = '' if not post else post
node = nid2node[int(b)]
fstring = ""
if features:
fstring = "".join(["[&&NHX:",
':'.join(["%s=%s" %(f, getattr(node, f))
for f in features if hasattr(node, f)])
, "]"])
return ''.join([pre, node.name, fstring, post])
if newick_only:
id_match = re.compile("([^0-9])?(\d+)([^0-9])?")
for nw in sp_trees:
yield re.sub(id_match, _nodereplacer, str(nw)+";")
else:
for nw in sp_trees:
# I take advantage from the fact that I generated the subtrees
# using tuples, so str representation is actually a newick :)
t = PhyloTree(str(nw)+";")
# Map features from original tree
for leaf in t.iter_leaves():
_nid = int(leaf.name)
for f in features:
leaf.add_feature(f, getattr(nid2node[_nid], f))
yield t
def calc_subtrees(tree):
'''
Computes the total number of species trees that TreeKO algorithm would produce for a given gene tree
returns: ntrees, ndups
'''
n2subtrees = {}
dups = 0
for n in tree.traverse("postorder"):
if n.children:
if is_dup(n):
dups += 1
subtrees = 0
for ch in n.children:
subtrees += n2subtrees[ch]
else:
subtrees = n2subtrees[n.children[0]] * n2subtrees[n.children[1]]
else:
subtrees = 1
n2subtrees[n] = subtrees
return n2subtrees[tree], dups
def iter_sptrees(sptrees, nid2node, features=None, newick_only=False):
""" Loads and map the species trees returned by get_subtrees"""
features = set(features) if features else set()
features.update(["name"])
def _nodereplacer(match):
pre, b, post = match.groups()
node = nid2node[int(b)]
fstring = ""
if features:
fstring = "".join(["[&&NHX:",
','.join(["%s=%s" %(f, getattr(node, f))
for f in features if hasattr(node, f)])
, "]"])
return ''.join([pre, node.name, fstring, post])
if newick_only:
id_match = re.compile("([^0-9])(\d+)([^0-9])")
for nw in sptrees:
yield re.sub(id_match, _nodereplacer, str(nw)+";")
else:
for nw in sptrees:
# I take advantage from the fact that I generated the subtrees
# using tuples, so str representation is actually a newick :)
t = PhyloTree(str(nw)+";")
# Map features from original tree
for leaf in t.iter_leaves():
_nid = int(leaf.name)
for f in features:
leaf.add_feature(f, getattr(nid2node[_nid], f))
yield t
def _get_subtrees_recursive(node, full_copy=True):
if is_dup(node):
sp_trees = []
for ch in node.children:
sp_trees.extend(_get_subtrees_recursive(ch, full_copy=full_copy))
return sp_trees
# saves a list of duplication nodes under current node
dups = []
for _n in node.iter_leaves(is_leaf_fn=is_dup):
if is_dup(_n):
dups.append(_n)
if dups:
# detach inner duplication nodes and stores their anchor point
subtrees = []
for dp in dups:
# The real node to attach sibling subtress
anchor = dp.up
dp.detach()
duptrees = []
#get all sibling sptrees in each side of the
#duplication. Each subtree is pointed to its anchor
for ch in dp.children:
for subt in _get_subtrees_recursive(ch, full_copy=full_copy):
if not full_copy:
subt = node.__class__(subt)
subt.up = anchor
duptrees.append(subt)
#all posible sptrees under this duplication are stored
subtrees.append(duptrees)
# Generates all combinations of subtrees in sibling duplications
sp_trees = []
for comb in itertools.product(*subtrees):
#each subtree is attached to its anchor point and make a copy
#of the final sp tree
for subt in comb:
#anchor = subt2anchor[subt]
if subt.up:
subt.up.children.append(subt)
#print subt.up
else:
sp_trees.append(subt)
if full_copy:
back_up = node.up
node.up = None
_node = node.copy()
node.up = back_up
else:
_node = node.write(format=9, features=["name", "evoltype"])
sp_trees.append(_node)
# Clear current node
for subt in comb:
subt.up.children.pop(-1)
else:
if full_copy:
back_up = node.up
node.up = None
_node = node.copy()
node.up = back_up
else:
_node = node.write(format=9, features=["name", "evoltype"])
#node.detach()
sp_trees = [_node]
return sp_trees
def get_subparts(n):
def is_dup(n):
return getattr(n, "evoltype", None) == "D"
subtrees = []
if is_dup(n):
for ch in n.get_children():
ch.detach()
subtrees.extend(get_subparts(ch))
else:
to_visit = []
for _n in n.iter_leaves(is_leaf_fn=is_dup):
if is_dup(_n):
to_visit.append(_n)
for _n in to_visit:
_n.detach()
freaks = [_n for _n in n.iter_descendants() if
len(_n.children)==1 or (not hasattr(_n, "_leaf") and not _n.children)]
for s in freaks:
s.delete(prevent_nondicotomic=True)
# Clean node structure to prevent nodes with only one child
while len(n.children) == 1:
n = n.children[0]
n.detach()
if not n.children and not hasattr(n, "_leaf"):
pass
else:
subtrees.append(n)
for _n in to_visit:
subtrees.extend(get_subparts(_n))
return subtrees
class PhyloNode(TreeNode):
"""
.. currentmodule:: ete3
Extends the standard :class:`TreeNode` instance. It adds
specific attributes and methods to work with phylogentic trees.
:argument newick: Path to the file containing the tree or, alternatively,
the text string containing the same information.
:argument alignment: file containing a multiple sequence alignment.
:argument alg_format: "fasta", "phylip" or "iphylip" (interleaved)
:argument format: sub-newick format
.. table::
====== ==============================================
FORMAT DESCRIPTION
====== ==============================================
0 flexible with support values
1 flexible with internal node names
2 all branches + leaf names + internal supports
3 all branches + all names
4 leaf branches + leaf names
5 internal and leaf branches + leaf names
6 internal branches + leaf names
7 leaf branches + all names
8 all names
9 leaf names
100 topology only
====== ==============================================
:argument sp_naming_function: Pointer to a parsing python
function that receives nodename as first argument and returns
the species name (see
:func:`PhyloNode.set_species_naming_function`. By default, the
3 first letter of nodes will be used as species identifiers.
:returns: a tree node object which represents the base of the tree.
"""
def _get_species(self):
if self._speciesFunction:
try:
return self._speciesFunction(self.name)
except:
return self._speciesFunction(self)
else:
return self._species
def _set_species(self, value):
if self._speciesFunction:
pass
else:
self._species = value
# This tweak overwrites the native 'name' attribute to create a
# property that updates the species code every time name is
# changed
#: .. currentmodule:: ete3
#:
#Species code associated to the node. This property can be
#automatically extracted from the TreeNode.name attribute or
#manually set (see :func:`PhyloNode.set_species_naming_function`).
species = property(fget = _get_species, fset = _set_species)
def __init__(self, newick=None, alignment=None, alg_format="fasta", \
sp_naming_function=_parse_species, format=0, **kargs):
# _update names?
self._name = "NoName"
self._species = "Unknown"
self._speciesFunction = None
# Caution! native __init__ has to be called after setting
# _speciesFunction to None!!
TreeNode.__init__(self, newick=newick, format=format, **kargs)
# This will be only executed after reading the whole tree,
# because the argument 'alignment' is not passed to the
# PhyloNode constructor during parsing
if alignment:
self.link_to_alignment(alignment, alg_format)
if newick:
self.set_species_naming_function(sp_naming_function)
def __repr__(self):
return "PhyloTree node '%s' (%s)" %(self.name, hex(self.__hash__()))
def set_species_naming_function(self, fn):
"""
Sets the parsing function used to extract species name from a
node's name.
:argument fn: Pointer to a parsing python function that
receives nodename as first argument and returns the species
name.
::
# Example of a parsing function to extract species names for
# all nodes in a given tree.
def parse_sp_name(node_name):
return node_name.split("_")[1]
tree.set_species_naming_function(parse_sp_name)
"""
if fn:
for n in self.traverse():
n._speciesFunction = fn
if n.is_leaf():
n.features.add("species")
def link_to_alignment(self, alignment, alg_format="fasta", **kwargs):
missing_leaves = []
missing_internal = []
if type(alignment) == SeqGroup:
alg = alignment
else:
alg = SeqGroup(alignment, format=alg_format, **kwargs)
# sets the seq of
for n in self.traverse():
try:
n.add_feature("sequence",alg.get_seq(n.name))
except KeyError:
if n.is_leaf():
missing_leaves.append(n.name)
else:
missing_internal.append(n.name)
if len(missing_leaves)>0:
print("Warnning: [%d] terminal nodes could not be found in the alignment." %\
len(missing_leaves), file=sys.stderr)
# Show warning of not associated internal nodes.
# if len(missing_internal)>0:
# print >>sys.stderr, \
# "Warnning: [%d] internal nodes could not be found in the alignment." %\
# len(missing_leaves)
def get_species(self):
""" Returns the set of species covered by its partition. """
return set([l.species for l in self.iter_leaves()])
def iter_species(self):
""" Returns an iterator over the species grouped by this node. """
spcs = set([])
for l in self.iter_leaves():
if l.species not in spcs:
spcs.add(l.species)
yield l.species
def get_age(self, species2age):
"""
Implements the phylostratigrafic method described in:
Huerta-Cepas, J., & Gabaldon, T. (2011). Assigning duplication events to
relative temporal scales in genome-wide studies. Bioinformatics, 27(1),
38-45.
"""
return max([species2age[sp] for sp in self.get_species()])
def reconcile(self, species_tree):
""" Returns the reconcilied topology with the provided species
tree, and a list of evolutionary events inferred from such
reconciliation. """
return get_reconciled_tree(self, species_tree, [])
def get_my_evol_events(self, sos_thr=0.0):
""" Returns a list of duplication and speciation events in
which the current node has been involved. Scanned nodes are
also labeled internally as dup=True|False. You can access this
labels using the 'node.dup' sintaxis.
Method: the algorithm scans all nodes from the given leafName to
the root. Nodes are assumed to be duplications when a species
overlap is found between its child linages. Method is described
more detail in:
"The Human Phylome." Huerta-Cepas J, Dopazo H, Dopazo J, Gabaldon
T. Genome Biol. 2007;8(6):R109.
"""
return spoverlap.get_evol_events_from_leaf(self, sos_thr=sos_thr)
def get_descendant_evol_events(self, sos_thr=0.0):
""" Returns a list of **all** duplication and speciation
events detected after this node. Nodes are assumed to be
duplications when a species overlap is found between its child
linages. Method is described more detail in:
"The Human Phylome." Huerta-Cepas J, Dopazo H, Dopazo J, Gabaldon
T. Genome Biol. 2007;8(6):R109.
"""
return spoverlap.get_evol_events_from_root(self, sos_thr=sos_thr)
def get_farthest_oldest_leaf(self, species2age, is_leaf_fn=None):
""" Returns the farthest oldest leaf to the current
one. It requires an species2age dictionary with the age
estimation for all species.
:argument None is_leaf_fn: A pointer to a function that
receives a node instance as unique argument and returns True
or False. It can be used to dynamically collapse nodes, so
they are seen as leaves.
"""
root = self.get_tree_root()
outgroup_dist = 0
outgroup_node = self
outgroup_age = 0 # self.get_age(species2age)
for leaf in root.iter_leaves(is_leaf_fn=is_leaf_fn):
if leaf.get_age(species2age) > outgroup_age:
outgroup_dist = leaf.get_distance(self)
outgroup_node = leaf
outgroup_age = species2age[leaf.get_species().pop()]
elif leaf.get_age(species2age) == outgroup_age:
dist = leaf.get_distance(self)
if dist>outgroup_dist:
outgroup_dist = leaf.get_distance(self)
outgroup_node = leaf
outgroup_age = species2age[leaf.get_species().pop()]
return outgroup_node
def get_farthest_oldest_node(self, species2age):
"""
.. versionadded:: 2.1
Returns the farthest oldest node (leaf or internal). The
difference with get_farthest_oldest_leaf() is that in this
function internal nodes grouping seqs from the same species
are collapsed.
"""
# I use a custom is_leaf() function to collapse nodes groups
# seqs from the same species
is_leaf = lambda node: len(node.get_species())==1
return self.get_farthest_oldest_leaf(species2age, is_leaf_fn=is_leaf)
def get_age_balanced_outgroup(self, species2age):
"""
.. versionadded:: 2.2
Returns the node better balance current tree structure
according to the topological age of the different leaves and
internal node sizes.
:param species2age: A dictionary translating from leaf names
into a topological age.
.. warning: This is currently an experimental method!!
"""
root = self
all_seqs = set(self.get_leaf_names())
outgroup_dist = 0
best_balance = max(species2age.values())
outgroup_node = self
outgroup_size = 0
for leaf in root.iter_descendants():
leaf_seqs = set(leaf.get_leaf_names())
size = len(leaf_seqs)
leaf_species =[self._speciesFunction(s) for s in leaf_seqs]
out_species = [self._speciesFunction(s) for s in all_seqs-leaf_seqs]
leaf_age_min = min([species2age[sp] for sp in leaf_species])
out_age_min = min([species2age[sp] for sp in out_species])
leaf_age_max = max([species2age[sp] for sp in leaf_species])
out_age_max = max([species2age[sp] for sp in out_species])
leaf_age = leaf_age_max - leaf_age_min
out_age = out_age_max - out_age_min
age_inbalance = abs(out_age - leaf_age)
# DEBUG ONLY
# leaf.add_features(age_inbalance = age_inbalance, age=leaf_age)
update = False
if age_inbalance < best_balance:
update = True
elif age_inbalance == best_balance:
if size > outgroup_size:
update = True
elif size == outgroup_size:
dist = self.get_distance(leaf)
outgroup_dist = self.get_distance(outgroup_node)
if dist > outgroup_dist:
update = True
if update:
best_balance = age_inbalance
outgroup_node = leaf
outgroup_size = size
return outgroup_node
def get_speciation_trees(self, map_features=None, autodetect_duplications=True,
newick_only=False, target_attr='species'):
"""
.. versionadded: 2.2
Calculates all possible species trees contained within a
duplicated gene family tree as described in `Treeko
<http://treeko.cgenomics.org>`_ (see `Marcet and Gabaldon,
2011 <http://www.ncbi.nlm.nih.gov/pubmed/21335609>`_ ).
:argument True autodetect_duplications: If True, duplication
nodes will be automatically detected using the Species Overlap
algorithm (:func:`PhyloNode.get_descendants_evol_events`. If
False, duplication nodes within the original tree are expected
to contain the feature "evoltype=D".
:argument None features: A list of features that should be
mapped from the original gene family tree to each species
tree subtree.
:returns: (number_of_sptrees, number_of_dups, species_tree_iterator)
"""
t = self
if autodetect_duplications:
#n2content, n2species = t.get_node2species()
n2content = t.get_cached_content()
n2species = t.get_cached_content(store_attr=target_attr)
for node in n2content:
sp_subtotal = sum([len(n2species[_ch]) for _ch in node.children])
if len(n2species[node]) > 1 and len(n2species[node]) != sp_subtotal:
node.add_features(evoltype="D")
sp_trees = get_subtrees(t, features=map_features, newick_only=newick_only)
return sp_trees
def __get_speciation_trees_recursive(self):
""" experimental and testing """
t = self.copy()
if autodetect_duplications:
dups = 0
#n2content, n2species = t.get_node2species()
n2content = t.get_cached_content()
n2species = t.get_cached_content(store_attr="species")
#print "Detecting dups"
for node in n2content:
sp_subtotal = sum([len(n2species[_ch]) for _ch in node.children])
if len(n2species[node]) > 1 and len(n2species[node]) != sp_subtotal:
node.add_features(evoltype="D")
dups += 1
elif node.is_leaf():
node._leaf = True
#print dups
else:
for node in t.iter_leaves():
node._leaf = True
subtrees = _get_subtrees_recursive(t)
return len(subtrees), 0, subtrees
def split_by_dups(self, autodetect_duplications=True):
"""
.. versionadded: 2.2
Returns the list of all subtrees resulting from splitting
current tree by its duplication nodes.
:argument True autodetect_duplications: If True, duplication
nodes will be automatically detected using the Species Overlap
algorithm (:func:`PhyloNode.get_descendants_evol_events`. If
False, duplication nodes within the original tree are expected
to contain the feature "evoltype=D".
:returns: species_trees
"""
try:
t = self.copy()
except Exception:
t = self.copy("deepcopy")
if autodetect_duplications:
dups = 0
#n2content, n2species = t.get_node2species()
n2content = t.get_cached_content()
n2species = t.get_cached_content(store_attr="species")
#print "Detecting dups"
for node in n2content:
sp_subtotal = sum([len(n2species[_ch]) for _ch in node.children])
if len(n2species[node]) > 1 and len(n2species[node]) != sp_subtotal:
node.add_features(evoltype="D")
dups += 1
elif node.is_leaf():
node._leaf = True
#print dups
else:
for node in t.iter_leaves():
node._leaf = True
sp_trees = get_subparts(t)
return sp_trees
def collapse_lineage_specific_expansions(self, species=None, return_copy=True):
""" Converts lineage specific expansion nodes into a single
tip node (randomly chosen from tips within the expansion).
:param None species: If supplied, only expansions matching the
species criteria will be pruned. When None, all expansions
within the tree will be processed.
"""
if species and isinstance(species, (list, tuple)):
species = set(species)
elif species and (not isinstance(species, (set, frozenset))):
raise TypeError("species argument should be a set (preferred), list or tuple")
prunned = self.copy("deepcopy") if return_copy else self
n2sp = prunned.get_cached_content(store_attr="species")
n2leaves = prunned.get_cached_content()
is_expansion = lambda n: (len(n2sp[n])==1 and len(n2leaves[n])>1
and (species is None or species & n2sp[n]))
for n in prunned.get_leaves(is_leaf_fn=is_expansion):
repre = list(n2leaves[n])[0]
repre.detach()
if n is not prunned:
n.up.add_child(repre)
n.detach()
else:
return repre
return prunned
def annotate_ncbi_taxa(self, taxid_attr='species', tax2name=None, tax2track=None, tax2rank=None, dbfile=None):
"""Add NCBI taxonomy annotation to all descendant nodes. Leaf nodes are
expected to contain a feature (name, by default) encoding a valid taxid
number.
All descendant nodes (including internal nodes) are annotated with the
following new features:
`Node.spname`: scientific spcies name as encoded in the NCBI taxonomy database
`Node.named_lineage`: the NCBI lineage track using scientific names
`Node.taxid`: NCBI taxid number
`Node.lineage`: same as named_lineage but using taxid codes.
Note that for internal nodes, NCBI information will refer to the first
common lineage of the grouped species.
:param name taxid_attr: the name of the feature that should be used to access the taxid number associated to each node.
:param None tax2name: A dictionary where keys are taxid
numbers and values are their translation into NCBI
scientific name. Its use is optional and allows to avoid
database queries when annotating many trees containing the
same set of taxids.
:param None tax2track: A dictionary where keys are taxid
numbers and values are their translation into NCBI lineage
tracks (taxids). Its use is optional and allows to avoid
database queries when annotating many trees containing the
same set of taxids.
:param None tax2rank: A dictionary where keys are taxid
numbers and values are their translation into NCBI rank
name. Its use is optional and allows to avoid database
queries when annotating many trees containing the same set
of taxids.
:param None dbfile : If provided, the provided file will be
used as a local copy of the NCBI taxonomy database.
:returns: tax2name (a dictionary translating taxid numbers
into scientific name), tax2lineage (a dictionary
translating taxid numbers into their corresponding NCBI
lineage track) and tax2rank (a dictionary translating
taxid numbers into rank names).
"""
ncbi = NCBITaxa(dbfile=dbfile)
return ncbi.annotate_tree(self, taxid_attr=taxid_attr, tax2name=tax2name, tax2track=tax2track, tax2rank=tax2rank)
def ncbi_compare(self, autodetect_duplications=True, cached_content=None):
if not cached_content:
cached_content = self.get_cached_content()
cached_species = set([n.species for n in cached_content[self]])
if len(cached_species) != len(cached_content[self]):
print(cached_species)
ntrees, ndups, target_trees = self.get_speciation_trees(autodetect_duplications=autodetect_duplications, map_features=["taxid"])
else:
target_trees = [self]
ncbi = NCBITaxa()
for t in target_trees:
ncbi.get_broken_branches(t, cached_content)
#: .. currentmodule:: ete3
#
PhyloTree = PhyloNode
|