1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
|
from __future__ import absolute_import
from __future__ import print_function
import unittest
from .. import PhyloTree, SeqGroup
from .datasets import *
class Test_phylo_module(unittest.TestCase):
# ALL TESTS USE THIS EXAMPLE TREE
#
# /-Dme_001
# /--------|
# | \-Dme_002
# |
# | /-Cfa_001
# | /--------|
# | | \-Mms_001
# | |
#---------| | /-Hsa_001
# | | /--------|
# | /--------| /--------| \-Hsa_003
# | | | | |
# | | | /--------| \-Ptr_001
# | | | | |
# | | | | \-Mmu_001
# | | \--------|
# \--------| | /-Hsa_004
# | | /--------|
# | \--------| \-Ptr_004
# | |
# | \-Mmu_004
# |
# | /-Ptr_002
# \--------|
# | /-Hsa_002
# \--------|
# \-Mmu_002
def test_link_alignmets(self):
""" Phylotree can be linked to SeqGroup objects"""
fasta = """
>seqA
MAEIPDETIQQFMALT---HNIAVQYLSEFGDLNEALNSYYASQTDDIKDRREEAH
>seqB
MAEIPDATIQQFMALTNVSHNIAVQY--EFGDLNEALNSYYAYQTDDQKDRREEAH
>seqC
MAEIPDATIQ---ALTNVSHNIAVQYLSEFGDLNEALNSYYASQTDDQPDRREEAH
>seqD
MAEAPDETIQQFMALTNVSHNIAVQYLSEFGDLNEAL--------------REEAH
"""
# Caution with iphylip string. blank spaces in the beginning are important
iphylip = """
4 76
seqA MAEIPDETIQ QFMALT---H NIAVQYLSEF GDLNEALNSY YASQTDDIKD RREEAHQFMA
seqB MAEIPDATIQ QFMALTNVSH NIAVQY--EF GDLNEALNSY YAYQTDDQKD RREEAHQFMA
seqC MAEIPDATIQ ---ALTNVSH NIAVQYLSEF GDLNEALNSY YASQTDDQPD RREEAHQFMA
seqD MAEAPDETIQ QFMALTNVSH NIAVQYLSEF GDLNEAL--- ---------- -REEAHQ---
LTNVSHQFMA LTNVSH
LTNVSH---- ------
LTNVSH---- ------
-------FMA LTNVSH
"""
# Loads a tree and link it to an alignment. As usual, 'alignment' can be
# the path to a file or the data themselves in text string format
alg1 = SeqGroup(fasta)
alg2 = SeqGroup(iphylip, format="iphylip")
t = PhyloTree("(((seqA,seqB),seqC),seqD);", alignment=fasta, alg_format="fasta")
for l in t.get_leaves():
self.assertEqual(l.sequence, alg1.get_seq(l.name))
# The associated alignment can be changed at any time
t.link_to_alignment(alignment=alg2, alg_format="iphylip")
for l in t.get_leaves():
self.assertEqual(l.sequence, alg2.get_seq(l.name))
def test_get_sp_overlap_on_all_descendants(self):
""" Tests ortholgy prediction using the sp overlap"""
# Creates a gene phylogeny with several duplication events at
# different levels.
t = PhyloTree('((Dme_001,Dme_002),(((Cfa_001,Mms_001),((((Hsa_001,Hsa_003),Ptr_001),Mmu_001),((Hsa_004,Ptr_004),Mmu_004))),(Ptr_002,(Hsa_002,Mmu_002))));')
# Scans the tree using the species overlap algorithm and detect all
# speciation and duplication events
events = t.get_descendant_evol_events()
# Check that all duplications are detected
dup1 = t.get_common_ancestor("Hsa_001", "Hsa_004")
self.assertEqual(dup1.evoltype, "D")
dup2 = t.get_common_ancestor("Dme_001", "Dme_002")
self.assertEqual(dup2.evoltype, "D")
dup3 = t.get_common_ancestor("Hsa_001", "Hsa_002")
self.assertEqual(dup3.evoltype, "D")
dup4 = t.get_common_ancestor("Hsa_001", "Hsa_003")
self.assertEqual(dup4.evoltype, "D")
# All other nodes should be speciation
for node in t.traverse():
if not node.is_leaf() and \
node not in set([dup1, dup2, dup3, dup4]):
self.assertEqual(node.evoltype, "S")
# Check events
for e in events:
self.assertEqual(e.node.evoltype, e.etype)
# Check orthology/paralogy prediction
orthologs = set()
for e in events:
if e.node == dup1:
self.assertEqual(e.inparalogs, set(['Ptr_001', 'Hsa_001', 'Mmu_001', 'Hsa_003']))
self.assertEqual(e.outparalogs, set(['Mmu_004', 'Ptr_004', 'Hsa_004']))
self.assertEqual(e.orthologs, set())
self.assertEqual(e.outparalogs, e.out_seqs)
self.assertEqual(e.inparalogs, e.in_seqs)
elif e.node == dup2:
self.assertEqual(e.inparalogs, set(['Dme_001']))
self.assertEqual(e.outparalogs, set(['Dme_002']))
self.assertEqual(e.orthologs, set())
self.assertEqual(e.outparalogs, e.out_seqs)
self.assertEqual(e.inparalogs, e.in_seqs)
elif e.node == dup3:
self.assertEqual(e.inparalogs, set(['Hsa_003', 'Cfa_001', 'Ptr_001', 'Hsa_001', 'Ptr_004', 'Hsa_004', 'Mmu_004', 'Mmu_001', 'Mms_001']))
self.assertEqual(e.outparalogs, set(['Hsa_002', 'Ptr_002', 'Mmu_002']))
self.assertEqual(e.orthologs, set())
self.assertEqual(e.outparalogs, e.out_seqs)
self.assertEqual(e.inparalogs, e.in_seqs)
elif e.node == dup4:
self.assertEqual(e.inparalogs, set(['Hsa_001']))
self.assertEqual(e.outparalogs, set(['Hsa_003']))
self.assertEqual(e.orthologs, set())
self.assertEqual(e.outparalogs, e.out_seqs)
self.assertEqual(e.inparalogs, e.in_seqs)
else:
key1 = list(e.inparalogs)
key2 = list(e.orthologs)
key1.sort()
key2.sort()
orthologs.add(tuple(sorted([tuple(key1), tuple(key2)])))
orthologies = [
[set(['Dme_001', 'Dme_002']), set(['Ptr_001', 'Cfa_001', 'Hsa_002', 'Hsa_003', 'Ptr_002', 'Hsa_001', 'Ptr_004', 'Hsa_004', 'Mmu_004', 'Mmu_001', 'Mms_001', 'Mmu_002'])],
[set(['Mms_001', 'Cfa_001']), set(['Hsa_003', 'Ptr_001', 'Hsa_001', 'Ptr_004', 'Hsa_004', 'Mmu_004', 'Mmu_001'])],
[set(['Ptr_002']), set(['Hsa_002', 'Mmu_002'])],
[set(['Cfa_001']), set(['Mms_001'])],
[set(['Hsa_002']), set(['Mmu_002'])],
[set(['Hsa_003', 'Hsa_001', 'Ptr_001']), set(['Mmu_001'])],
[set(['Ptr_004', 'Hsa_004']), set(['Mmu_004'])],
[set(['Hsa_003', 'Hsa_001']), set(['Ptr_001'])],
[set(['Hsa_004']), set(['Ptr_004'])]
]
expected_orthologs = set()
for l1,l2 in orthologies:
key1 = list(l1)
key2 = list(l2)
key1.sort()
key2.sort()
expected_orthologs.add(tuple(sorted([tuple(key1), tuple(key2)])))
# Are all orthologies as expected
self.assertEqual(expected_orthologs, orthologs)
# Test different sos_thr
t = PhyloTree('(((SP1_a, SP2_a), (SP3_a, SP1_b)), (SP1_c, SP2_c));')
seed = (t & 'SP1_a')
events = t.get_descendant_evol_events(0.1)
self.assertEqual(t.get_common_ancestor(seed, 'SP3_a').evoltype, 'D')
self.assertEqual(t.get_common_ancestor(seed, 'SP1_c').evoltype, 'D')
t = PhyloTree('(((SP1_a, SP2_a), (SP3_a, SP1_b)), (SP1_c, SP2_c));')
seed = (t & 'SP1_a')
events = t.get_descendant_evol_events(0.5)
self.assertEqual(t.get_common_ancestor(seed, 'SP3_a').evoltype, 'S')
self.assertEqual(t.get_common_ancestor(seed, 'SP1_c').evoltype, 'D')
t = PhyloTree('(((SP1_a, SP2_a), (SP3_a, SP1_b)), (SP1_c, SP2_c));')
seed = (t & 'SP1_a')
events = seed.get_my_evol_events(0.75)
self.assertEqual(t.get_common_ancestor(seed, 'SP3_a').evoltype, 'S')
self.assertEqual(t.get_common_ancestor(seed, 'SP1_c').evoltype, 'S')
def test_get_sp_overlap_on_a_seed(self):
""" Tests ortholgy prediction using sp overlap"""
# Creates a gene phylogeny with several duplication events at
# different levels.
t = PhyloTree('((Dme_001,Dme_002),(((Cfa_001,Mms_001),((((Hsa_001,Hsa_003),Ptr_001),Mmu_001),((Hsa_004,Ptr_004),Mmu_004))),(Ptr_002,(Hsa_002,Mmu_002))));')
# Scans the tree using the species overlap algorithm
seed = t.search_nodes(name="Hsa_001")[0]
events = seed.get_my_evol_events()
# Check that duplications are detected
dup1 = t.get_common_ancestor("Hsa_001", "Hsa_004")
#print(dup1)
self.assertEqual(dup1.evoltype, "D")
# This duplication is not in the seed path
dup2 = t.get_common_ancestor("Dme_001", "Dme_002")
self.assertTrue(not hasattr(dup2, "evoltype"))
dup3 = t.get_common_ancestor("Hsa_001", "Hsa_002")
self.assertEqual(dup3.evoltype, "D")
dup4 = t.get_common_ancestor("Hsa_001", "Hsa_003")
self.assertEqual(dup4.evoltype, "D")
# All other nodes should be speciation
node = seed
while node:
if not node.is_leaf() and \
node not in set([dup1, dup2, dup3, dup4]):
self.assertEqual(node.evoltype, "S")
node = node.up
# Check events
for e in events:
self.assertEqual(e.node.evoltype, e.etype)
# Check orthology/paralogy prediction
orthologs = set()
for e in events:
if e.node == dup1:
self.assertEqual(e.inparalogs, set(['Hsa_001', 'Hsa_003']))
self.assertEqual(e.outparalogs, set(['Hsa_004']))
self.assertEqual(e.orthologs, set())
self.assertEqual(e.in_seqs, set(['Ptr_001', 'Hsa_001', 'Mmu_001', 'Hsa_003']))
self.assertEqual(e.out_seqs, set(['Mmu_004', 'Ptr_004', 'Hsa_004']))
elif e.node == dup3:
self.assertEqual(e.inparalogs, set(['Hsa_003', 'Hsa_001', 'Hsa_004' ]))
self.assertEqual(e.outparalogs, set(['Hsa_002']))
self.assertEqual(e.orthologs, set())
self.assertEqual(e.in_seqs, set(['Hsa_003', 'Cfa_001', 'Ptr_001', 'Hsa_001', 'Ptr_004', 'Hsa_004', 'Mmu_004', 'Mmu_001', 'Mms_001']))
self.assertEqual(e.out_seqs, set(['Hsa_002', 'Ptr_002', 'Mmu_002']))
elif e.node == dup4:
self.assertEqual(e.inparalogs, set(['Hsa_001']))
self.assertEqual(e.outparalogs, set(['Hsa_003']))
self.assertEqual(e.orthologs, set())
self.assertEqual(e.in_seqs, set(['Hsa_001']))
self.assertEqual(e.out_seqs, set(['Hsa_003']))
else:
key1 = list(e.inparalogs)
key2 = list(e.orthologs)
key1.sort()
key2.sort()
orthologs.add(tuple(sorted([tuple(key1), tuple(key2)])))
orthologies = [
[set(['Dme_001', 'Dme_002']), set([ 'Hsa_002', 'Hsa_003', 'Hsa_001', 'Hsa_004' ])],
[set(['Mms_001', 'Cfa_001']), set(['Hsa_003', 'Hsa_001', 'Hsa_004'])],
[set(['Hsa_003', 'Hsa_001']), set(['Mmu_001'])],
[set(['Hsa_003', 'Hsa_001']), set(['Ptr_001'])],
]
expected_orthologs = set()
for l1,l2 in orthologies:
key1 = list(l1)
key2 = list(l2)
key1.sort()
key2.sort()
expected_orthologs.add(tuple(sorted([tuple(key1), tuple(key2)])))
# Are all orthologies as expected
self.assertEqual(expected_orthologs, orthologs)
# Test different sos_thr
t = PhyloTree('(((SP1_a, SP2_a), (SP3_a, SP1_b)), (SP1_c, SP2_c));')
seed = (t & 'SP1_a')
events = seed.get_my_evol_events(0.1)
self.assertEqual(t.get_common_ancestor(seed, 'SP3_a').evoltype, 'D')
self.assertEqual(t.get_common_ancestor(seed, 'SP1_c').evoltype, 'D')
t = PhyloTree('(((SP1_a, SP2_a), (SP3_a, SP1_b)), (SP1_c, SP2_c));')
seed = (t & 'SP1_a')
events = seed.get_my_evol_events(0.50)
self.assertEqual(t.get_common_ancestor(seed, 'SP3_a').evoltype, 'S')
self.assertEqual(t.get_common_ancestor(seed, 'SP1_c').evoltype, 'D')
t = PhyloTree('(((SP1_a, SP2_a), (SP3_a, SP1_b)), (SP1_c, SP2_c));')
seed = (t & 'SP1_a')
events = seed.get_my_evol_events(0.75)
self.assertEqual(t.get_common_ancestor(seed, 'SP3_a').evoltype, 'S')
self.assertEqual(t.get_common_ancestor(seed, 'SP1_c').evoltype, 'S')
def test_reconciliation(self):
""" Tests ortholgy prediction based on the species reconciliation method"""
gene_tree_nw = '((Dme_001,Dme_002),(((Cfa_001,Mms_001),((Hsa_001,Ptr_001),Mmu_001)),(Ptr_002,(Hsa_002,Mmu_002))));'
species_tree_nw = "((((Hsa, Ptr), Mmu), (Mms, Cfa)), Dme);"
genetree = PhyloTree(gene_tree_nw)
sptree = PhyloTree(species_tree_nw)
recon_tree, events = genetree.reconcile(sptree)
# Check that reconcilied tree nodes have the correct lables:
# gene loss, duplication, etc.
expected_recon = "((Dme_001:1,Dme_002:1)1:1[&&NHX:evoltype=D],(((Cfa_001:1,Mms_001:1)1:1[&&NHX:evoltype=S],((Hsa_001:1,Ptr_001:1)1:1[&&NHX:evoltype=S],Mmu_001:1)1:1[&&NHX:evoltype=S])1:1[&&NHX:evoltype=S],((Mms:1[&&NHX:evoltype=L],Cfa:1[&&NHX:evoltype=L])1:1[&&NHX:evoltype=L],(((Hsa:1[&&NHX:evoltype=L],Ptr_002:1)1:1[&&NHX:evoltype=L],Mmu:1[&&NHX:evoltype=L])1:1[&&NHX:evoltype=L],((Ptr:1[&&NHX:evoltype=L],Hsa_002:1)1:1[&&NHX:evoltype=L],Mmu_002:1)1:1[&&NHX:evoltype=S])1:1[&&NHX:evoltype=D])1:1[&&NHX:evoltype=L])1:1[&&NHX:evoltype=D])[&&NHX:evoltype=S];"
self.assertEqual(recon_tree.write(["evoltype"], format=9), PhyloTree(expected_recon).write(features=["evoltype"],format=9))
def test_miscelaneus(self):
""" Test several things """
# Creates a gene phylogeny with several duplication events at
# different levels.
t = PhyloTree('((Dme_001,Dme_002),(((Cfa_001,Mms_001),((((Hsa_001,Hsa_003),Ptr_001),Mmu_001),((Hsa_004,Ptr_004),Mmu_004))),(Ptr_002,(Hsa_002,Mmu_002))));')
# Create a dictionary with relative ages for the species present in
# the phylogenetic tree. Note that ages are only relative numbers to
# define which species are older, and that different species can
# belong to the same age.
sp2age = {
'Hsa': 1, # Homo sapiens (Hominids)
'Ptr': 2, # P. troglodytes (primates)
'Mmu': 2, # Macaca mulata (primates)
'Mms': 3, # Mus musculus (mammals)
'Cfa': 3, # Canis familiaris (mammals)
'Dme': 4 # Drosophila melanogaster (metazoa)
}
# Check that dup ages are correct
dup1 = t.get_common_ancestor("Hsa_001", "Hsa_004")
self.assertEqual(dup1.get_age(sp2age), 2)
dup2 = t.get_common_ancestor("Dme_001", "Dme_002")
self.assertEqual(dup2.get_age(sp2age), 4)
dup3 = t.get_common_ancestor("Hsa_001", "Hsa_002")
self.assertEqual(dup3.get_age(sp2age), 3)
dup4 = t.get_common_ancestor("Hsa_001", "Hsa_003")
self.assertEqual(dup4.get_age(sp2age), 1)
# Check rooting options
expected_root = t.search_nodes(name="Dme_002")[0]
expected_root.dist += 2.3
self.assertEqual(t.get_farthest_oldest_leaf(sp2age), expected_root)
#print t
#print t.get_farthest_oldest_node(sp2age)
# Check get species functions
self.assertEqual(t.get_species(), set(sp2age.keys()))
self.assertEqual(set([sp for sp in t.iter_species()]), set(sp2age.keys()))
def test_colappse(self):
t = PhyloTree('((Dme_001,Dme_002),(((Cfa_001,Mms_001),((((Hsa_001,Hsa_001),Ptr_001),Mmu_001),((Hsa_004,Ptr_004),Mmu_004))),(Ptr_002,(Hsa_002,Mmu_002))));')
collapsed_hsa = '((Dme_001:1,Dme_002:1)1:1,(((Cfa_001:1,Mms_001:1)1:1,(((Ptr_001:1,Hsa_001:1)1:1,Mmu_001:1)1:1,((Hsa_004:1,Ptr_004:1)1:1,Mmu_004:1)1:1)1:1)1:1,(Ptr_002:1,(Hsa_002:1,Mmu_002:1)1:1)1:1)1:1);'
t2 = t.collapse_lineage_specific_expansions(['Hsa'])
self.assertEqual(str(collapsed_hsa), str(t2.write()))
with self.assertRaises(TypeError):
print(t.collapse_lineage_specific_expansions('Hsa'))
if __name__ == '__main__':
unittest.main()
|