File: test_phylotree.py

package info (click to toggle)
python-ete3 3.1.2%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,148 kB
  • sloc: python: 52,375; javascript: 12,959; xml: 4,903; ansic: 69; sql: 65; makefile: 26; sh: 7
file content (365 lines) | stat: -rw-r--r-- 17,082 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
from __future__ import absolute_import
from __future__ import print_function
import unittest

from .. import PhyloTree, SeqGroup
from .datasets import *

class Test_phylo_module(unittest.TestCase):

    # ALL TESTS USE THIS EXAMPLE TREE
    #
    #                    /-Dme_001
    #          /--------|
    #         |          \-Dme_002
    #         |
    #         |                              /-Cfa_001
    #         |                    /--------|
    #         |                   |          \-Mms_001
    #         |                   |
    #---------|                   |                                        /-Hsa_001
    #         |                   |                              /--------|
    #         |          /--------|                    /--------|          \-Hsa_003
    #         |         |         |                   |         |
    #         |         |         |          /--------|          \-Ptr_001
    #         |         |         |         |         |
    #         |         |         |         |          \-Mmu_001
    #         |         |          \--------|
    #          \--------|                   |                    /-Hsa_004
    #                   |                   |          /--------|
    #                   |                    \--------|          \-Ptr_004
    #                   |                             |
    #                   |                              \-Mmu_004
    #                   |
    #                   |          /-Ptr_002
    #                    \--------|
    #                             |          /-Hsa_002
    #                              \--------|
    #                                        \-Mmu_002


    def test_link_alignmets(self):
        """ Phylotree can be linked to SeqGroup objects"""
        fasta = """
         >seqA
         MAEIPDETIQQFMALT---HNIAVQYLSEFGDLNEALNSYYASQTDDIKDRREEAH
         >seqB
         MAEIPDATIQQFMALTNVSHNIAVQY--EFGDLNEALNSYYAYQTDDQKDRREEAH
         >seqC
         MAEIPDATIQ---ALTNVSHNIAVQYLSEFGDLNEALNSYYASQTDDQPDRREEAH
         >seqD
         MAEAPDETIQQFMALTNVSHNIAVQYLSEFGDLNEAL--------------REEAH
        """
        # Caution with iphylip string. blank spaces in the beginning are important
        iphylip = """
         4 76
      seqA   MAEIPDETIQ QFMALT---H NIAVQYLSEF GDLNEALNSY YASQTDDIKD RREEAHQFMA
      seqB   MAEIPDATIQ QFMALTNVSH NIAVQY--EF GDLNEALNSY YAYQTDDQKD RREEAHQFMA
      seqC   MAEIPDATIQ ---ALTNVSH NIAVQYLSEF GDLNEALNSY YASQTDDQPD RREEAHQFMA
      seqD   MAEAPDETIQ QFMALTNVSH NIAVQYLSEF GDLNEAL--- ---------- -REEAHQ---

             LTNVSHQFMA LTNVSH
             LTNVSH---- ------
             LTNVSH---- ------
             -------FMA LTNVSH
        """

        # Loads a tree and link it to an alignment. As usual, 'alignment' can be
        # the path to a file or the data themselves in text string format

        alg1 = SeqGroup(fasta)
        alg2 = SeqGroup(iphylip, format="iphylip")

        t = PhyloTree("(((seqA,seqB),seqC),seqD);", alignment=fasta, alg_format="fasta")

        for l in t.get_leaves():
            self.assertEqual(l.sequence, alg1.get_seq(l.name))

        # The associated alignment can be changed at any time
        t.link_to_alignment(alignment=alg2, alg_format="iphylip")

        for l in t.get_leaves():
            self.assertEqual(l.sequence, alg2.get_seq(l.name))

    def test_get_sp_overlap_on_all_descendants(self):
        """ Tests ortholgy prediction using the sp overlap"""
        # Creates a gene phylogeny with several duplication events at
        # different levels.
        t = PhyloTree('((Dme_001,Dme_002),(((Cfa_001,Mms_001),((((Hsa_001,Hsa_003),Ptr_001),Mmu_001),((Hsa_004,Ptr_004),Mmu_004))),(Ptr_002,(Hsa_002,Mmu_002))));')

        # Scans the tree using the species overlap algorithm and detect all
        # speciation and duplication events
        events = t.get_descendant_evol_events()

        # Check that all duplications are detected
        dup1 = t.get_common_ancestor("Hsa_001", "Hsa_004")
        self.assertEqual(dup1.evoltype, "D")

        dup2 = t.get_common_ancestor("Dme_001", "Dme_002")
        self.assertEqual(dup2.evoltype, "D")

        dup3 = t.get_common_ancestor("Hsa_001", "Hsa_002")
        self.assertEqual(dup3.evoltype, "D")

        dup4 = t.get_common_ancestor("Hsa_001", "Hsa_003")
        self.assertEqual(dup4.evoltype, "D")


        # All other nodes should be speciation
        for node in t.traverse():
            if not node.is_leaf() and \
                   node not in set([dup1, dup2, dup3, dup4]):
                self.assertEqual(node.evoltype, "S")

        # Check events
        for e in events:
            self.assertEqual(e.node.evoltype, e.etype)

        # Check orthology/paralogy prediction
        orthologs = set()
        for e in events:
            if e.node == dup1:
                self.assertEqual(e.inparalogs, set(['Ptr_001', 'Hsa_001', 'Mmu_001', 'Hsa_003']))
                self.assertEqual(e.outparalogs, set(['Mmu_004', 'Ptr_004', 'Hsa_004']))
                self.assertEqual(e.orthologs, set())
                self.assertEqual(e.outparalogs, e.out_seqs)
                self.assertEqual(e.inparalogs, e.in_seqs)
            elif e.node == dup2:
                self.assertEqual(e.inparalogs, set(['Dme_001']))
                self.assertEqual(e.outparalogs, set(['Dme_002']))
                self.assertEqual(e.orthologs, set())
                self.assertEqual(e.outparalogs, e.out_seqs)
                self.assertEqual(e.inparalogs, e.in_seqs)
            elif e.node == dup3:
                self.assertEqual(e.inparalogs, set(['Hsa_003', 'Cfa_001', 'Ptr_001', 'Hsa_001', 'Ptr_004', 'Hsa_004', 'Mmu_004', 'Mmu_001', 'Mms_001']))
                self.assertEqual(e.outparalogs, set(['Hsa_002', 'Ptr_002', 'Mmu_002']))
                self.assertEqual(e.orthologs, set())
                self.assertEqual(e.outparalogs, e.out_seqs)
                self.assertEqual(e.inparalogs, e.in_seqs)
            elif e.node == dup4:
                self.assertEqual(e.inparalogs, set(['Hsa_001']))
                self.assertEqual(e.outparalogs, set(['Hsa_003']))
                self.assertEqual(e.orthologs, set())
                self.assertEqual(e.outparalogs, e.out_seqs)
                self.assertEqual(e.inparalogs, e.in_seqs)
            else:

                key1 = list(e.inparalogs)
                key2 = list(e.orthologs)
                key1.sort()
                key2.sort()
                orthologs.add(tuple(sorted([tuple(key1), tuple(key2)])))

        orthologies = [
            [set(['Dme_001', 'Dme_002']), set(['Ptr_001', 'Cfa_001', 'Hsa_002', 'Hsa_003', 'Ptr_002', 'Hsa_001', 'Ptr_004', 'Hsa_004', 'Mmu_004', 'Mmu_001', 'Mms_001', 'Mmu_002'])],
            [set(['Mms_001', 'Cfa_001']), set(['Hsa_003', 'Ptr_001', 'Hsa_001', 'Ptr_004', 'Hsa_004', 'Mmu_004', 'Mmu_001'])],
            [set(['Ptr_002']), set(['Hsa_002', 'Mmu_002'])],
            [set(['Cfa_001']), set(['Mms_001'])],
            [set(['Hsa_002']), set(['Mmu_002'])],
            [set(['Hsa_003', 'Hsa_001', 'Ptr_001']), set(['Mmu_001'])],
            [set(['Ptr_004', 'Hsa_004']), set(['Mmu_004'])],
            [set(['Hsa_003', 'Hsa_001']), set(['Ptr_001'])],
            [set(['Hsa_004']), set(['Ptr_004'])]
            ]
        expected_orthologs = set()
        for l1,l2 in orthologies:
            key1 = list(l1)
            key2 = list(l2)
            key1.sort()
            key2.sort()
            expected_orthologs.add(tuple(sorted([tuple(key1), tuple(key2)])))

        # Are all orthologies as expected
        self.assertEqual(expected_orthologs, orthologs)

        # Test different sos_thr
        t = PhyloTree('(((SP1_a, SP2_a), (SP3_a, SP1_b)), (SP1_c, SP2_c));')
        seed = (t & 'SP1_a')
        events = t.get_descendant_evol_events(0.1)
        self.assertEqual(t.get_common_ancestor(seed, 'SP3_a').evoltype, 'D')
        self.assertEqual(t.get_common_ancestor(seed, 'SP1_c').evoltype, 'D')

        t = PhyloTree('(((SP1_a, SP2_a), (SP3_a, SP1_b)), (SP1_c, SP2_c));')
        seed = (t & 'SP1_a')
        events = t.get_descendant_evol_events(0.5)
        self.assertEqual(t.get_common_ancestor(seed, 'SP3_a').evoltype, 'S')
        self.assertEqual(t.get_common_ancestor(seed, 'SP1_c').evoltype, 'D')

        t = PhyloTree('(((SP1_a, SP2_a), (SP3_a, SP1_b)), (SP1_c, SP2_c));')
        seed = (t & 'SP1_a')
        events = seed.get_my_evol_events(0.75)
        self.assertEqual(t.get_common_ancestor(seed, 'SP3_a').evoltype, 'S')
        self.assertEqual(t.get_common_ancestor(seed, 'SP1_c').evoltype, 'S')

    def test_get_sp_overlap_on_a_seed(self):
        """ Tests ortholgy prediction using sp overlap"""
        # Creates a gene phylogeny with several duplication events at
        # different levels.
        t = PhyloTree('((Dme_001,Dme_002),(((Cfa_001,Mms_001),((((Hsa_001,Hsa_003),Ptr_001),Mmu_001),((Hsa_004,Ptr_004),Mmu_004))),(Ptr_002,(Hsa_002,Mmu_002))));')

        # Scans the tree using the species overlap algorithm
        seed = t.search_nodes(name="Hsa_001")[0]
        events = seed.get_my_evol_events()

        # Check that duplications are detected
        dup1 = t.get_common_ancestor("Hsa_001", "Hsa_004")
        #print(dup1)
        self.assertEqual(dup1.evoltype, "D")

        # This duplication is not in the seed path
        dup2 = t.get_common_ancestor("Dme_001", "Dme_002")
        self.assertTrue(not hasattr(dup2, "evoltype"))

        dup3 = t.get_common_ancestor("Hsa_001", "Hsa_002")
        self.assertEqual(dup3.evoltype, "D")

        dup4 = t.get_common_ancestor("Hsa_001", "Hsa_003")
        self.assertEqual(dup4.evoltype, "D")

        # All other nodes should be speciation
        node = seed
        while node:
            if not node.is_leaf() and \
                   node not in set([dup1, dup2, dup3, dup4]):
                self.assertEqual(node.evoltype, "S")
            node = node.up

        # Check events
        for e in events:
            self.assertEqual(e.node.evoltype, e.etype)

        # Check orthology/paralogy prediction
        orthologs = set()
        for e in events:
            if e.node == dup1:
                self.assertEqual(e.inparalogs, set(['Hsa_001', 'Hsa_003']))
                self.assertEqual(e.outparalogs, set(['Hsa_004']))
                self.assertEqual(e.orthologs, set())
                self.assertEqual(e.in_seqs, set(['Ptr_001', 'Hsa_001', 'Mmu_001', 'Hsa_003']))
                self.assertEqual(e.out_seqs, set(['Mmu_004', 'Ptr_004', 'Hsa_004']))
            elif e.node == dup3:
                self.assertEqual(e.inparalogs, set(['Hsa_003', 'Hsa_001',  'Hsa_004' ]))
                self.assertEqual(e.outparalogs, set(['Hsa_002']))
                self.assertEqual(e.orthologs, set())
                self.assertEqual(e.in_seqs, set(['Hsa_003', 'Cfa_001', 'Ptr_001', 'Hsa_001', 'Ptr_004', 'Hsa_004', 'Mmu_004', 'Mmu_001', 'Mms_001']))
                self.assertEqual(e.out_seqs, set(['Hsa_002', 'Ptr_002', 'Mmu_002']))
            elif e.node == dup4:
                self.assertEqual(e.inparalogs, set(['Hsa_001']))
                self.assertEqual(e.outparalogs, set(['Hsa_003']))
                self.assertEqual(e.orthologs, set())
                self.assertEqual(e.in_seqs, set(['Hsa_001']))
                self.assertEqual(e.out_seqs, set(['Hsa_003']))
            else:

                key1 = list(e.inparalogs)
                key2 = list(e.orthologs)
                key1.sort()
                key2.sort()
                orthologs.add(tuple(sorted([tuple(key1), tuple(key2)])))


        orthologies = [
            [set(['Dme_001', 'Dme_002']), set([ 'Hsa_002', 'Hsa_003', 'Hsa_001',  'Hsa_004' ])],
            [set(['Mms_001', 'Cfa_001']), set(['Hsa_003',  'Hsa_001', 'Hsa_004'])],
            [set(['Hsa_003', 'Hsa_001']), set(['Mmu_001'])],
            [set(['Hsa_003', 'Hsa_001']), set(['Ptr_001'])],
            ]
        expected_orthologs = set()
        for l1,l2 in orthologies:
            key1 = list(l1)
            key2 = list(l2)
            key1.sort()
            key2.sort()
            expected_orthologs.add(tuple(sorted([tuple(key1), tuple(key2)])))

        # Are all orthologies as expected
        self.assertEqual(expected_orthologs, orthologs)

        # Test different sos_thr
        t = PhyloTree('(((SP1_a, SP2_a), (SP3_a, SP1_b)), (SP1_c, SP2_c));')
        seed = (t & 'SP1_a')
        events = seed.get_my_evol_events(0.1)
        self.assertEqual(t.get_common_ancestor(seed, 'SP3_a').evoltype, 'D')
        self.assertEqual(t.get_common_ancestor(seed, 'SP1_c').evoltype, 'D')

        t = PhyloTree('(((SP1_a, SP2_a), (SP3_a, SP1_b)), (SP1_c, SP2_c));')
        seed = (t & 'SP1_a')
        events = seed.get_my_evol_events(0.50)
        self.assertEqual(t.get_common_ancestor(seed, 'SP3_a').evoltype, 'S')
        self.assertEqual(t.get_common_ancestor(seed, 'SP1_c').evoltype, 'D')

        t = PhyloTree('(((SP1_a, SP2_a), (SP3_a, SP1_b)), (SP1_c, SP2_c));')
        seed = (t & 'SP1_a')
        events = seed.get_my_evol_events(0.75)
        self.assertEqual(t.get_common_ancestor(seed, 'SP3_a').evoltype, 'S')
        self.assertEqual(t.get_common_ancestor(seed, 'SP1_c').evoltype, 'S')

    def test_reconciliation(self):
        """ Tests ortholgy prediction based on the species reconciliation method"""
        gene_tree_nw = '((Dme_001,Dme_002),(((Cfa_001,Mms_001),((Hsa_001,Ptr_001),Mmu_001)),(Ptr_002,(Hsa_002,Mmu_002))));'
        species_tree_nw = "((((Hsa, Ptr), Mmu), (Mms, Cfa)), Dme);"

        genetree = PhyloTree(gene_tree_nw)
        sptree = PhyloTree(species_tree_nw)

        recon_tree, events = genetree.reconcile(sptree)

        # Check that reconcilied tree nodes have the correct lables:
        # gene loss, duplication, etc.
        expected_recon = "((Dme_001:1,Dme_002:1)1:1[&&NHX:evoltype=D],(((Cfa_001:1,Mms_001:1)1:1[&&NHX:evoltype=S],((Hsa_001:1,Ptr_001:1)1:1[&&NHX:evoltype=S],Mmu_001:1)1:1[&&NHX:evoltype=S])1:1[&&NHX:evoltype=S],((Mms:1[&&NHX:evoltype=L],Cfa:1[&&NHX:evoltype=L])1:1[&&NHX:evoltype=L],(((Hsa:1[&&NHX:evoltype=L],Ptr_002:1)1:1[&&NHX:evoltype=L],Mmu:1[&&NHX:evoltype=L])1:1[&&NHX:evoltype=L],((Ptr:1[&&NHX:evoltype=L],Hsa_002:1)1:1[&&NHX:evoltype=L],Mmu_002:1)1:1[&&NHX:evoltype=S])1:1[&&NHX:evoltype=D])1:1[&&NHX:evoltype=L])1:1[&&NHX:evoltype=D])[&&NHX:evoltype=S];"

        self.assertEqual(recon_tree.write(["evoltype"], format=9), PhyloTree(expected_recon).write(features=["evoltype"],format=9))

    def test_miscelaneus(self):
        """ Test several things """
        # Creates a gene phylogeny with several duplication events at
        # different levels.
        t = PhyloTree('((Dme_001,Dme_002),(((Cfa_001,Mms_001),((((Hsa_001,Hsa_003),Ptr_001),Mmu_001),((Hsa_004,Ptr_004),Mmu_004))),(Ptr_002,(Hsa_002,Mmu_002))));')

        # Create a dictionary with relative ages for the species present in
        # the phylogenetic tree.  Note that ages are only relative numbers to
        # define which species are older, and that different species can
        # belong to the same age.
        sp2age = {
          'Hsa': 1, # Homo sapiens (Hominids)
          'Ptr': 2, # P. troglodytes (primates)
          'Mmu': 2, # Macaca mulata (primates)
          'Mms': 3, # Mus musculus (mammals)
          'Cfa': 3, # Canis familiaris (mammals)
          'Dme': 4  # Drosophila melanogaster (metazoa)
        }


        # Check that dup ages are correct
        dup1 = t.get_common_ancestor("Hsa_001", "Hsa_004")
        self.assertEqual(dup1.get_age(sp2age), 2)
        dup2 = t.get_common_ancestor("Dme_001", "Dme_002")
        self.assertEqual(dup2.get_age(sp2age), 4)
        dup3 = t.get_common_ancestor("Hsa_001", "Hsa_002")
        self.assertEqual(dup3.get_age(sp2age), 3)
        dup4 = t.get_common_ancestor("Hsa_001", "Hsa_003")
        self.assertEqual(dup4.get_age(sp2age), 1)

        # Check rooting options
        expected_root = t.search_nodes(name="Dme_002")[0]
        expected_root.dist += 2.3
        self.assertEqual(t.get_farthest_oldest_leaf(sp2age), expected_root)
        #print t
        #print t.get_farthest_oldest_node(sp2age)


        # Check get species functions
        self.assertEqual(t.get_species(), set(sp2age.keys()))
        self.assertEqual(set([sp for sp in t.iter_species()]), set(sp2age.keys()))

    def test_colappse(self):
        t = PhyloTree('((Dme_001,Dme_002),(((Cfa_001,Mms_001),((((Hsa_001,Hsa_001),Ptr_001),Mmu_001),((Hsa_004,Ptr_004),Mmu_004))),(Ptr_002,(Hsa_002,Mmu_002))));')
        collapsed_hsa = '((Dme_001:1,Dme_002:1)1:1,(((Cfa_001:1,Mms_001:1)1:1,(((Ptr_001:1,Hsa_001:1)1:1,Mmu_001:1)1:1,((Hsa_004:1,Ptr_004:1)1:1,Mmu_004:1)1:1)1:1)1:1,(Ptr_002:1,(Hsa_002:1,Mmu_002:1)1:1)1:1)1:1);'
        t2 = t.collapse_lineage_specific_expansions(['Hsa'])
        self.assertEqual(str(collapsed_hsa), str(t2.write()))
        with self.assertRaises(TypeError):
            print(t.collapse_lineage_specific_expansions('Hsa'))


if __name__ == '__main__':
    unittest.main()