1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
|
from __future__ import absolute_import
from __future__ import print_function
import unittest
import random
import itertools
import json
import sys
from six.moves import range
from .. import Tree, PhyloTree, TreeNode
from ..coretype.tree import TreeError
from ..parser.newick import NewickError
from .datasets import *
class Test_Coretype_Tree(unittest.TestCase):
""" Tests tree basics. """
def test_read_write_exceptions(self):
def wrong_dist():
t = Tree()
t.dist = '1a'
def wrong_support():
t = Tree()
t.support = '1a'
def wrong_up():
t = Tree()
t.up = 'Something'
def wrong_children():
t = Tree()
t.children = 'Something'
self.assertRaises(TreeError, wrong_dist)
self.assertRaises(TreeError, wrong_support)
self.assertRaises(TreeError, wrong_up)
self.assertRaises(TreeError, wrong_children)
def test_add_remove_features(self):
#The features concept will probably change in future versions. It is
#very inefficient in larg trees.
t = Tree()
t.add_features(testf1=1, testf2="1", testf3=[1])
t.add_feature('testf4', set([1]))
self.assertEqual(t.testf1, 1)
self.assertEqual(t.testf2, "1")
self.assertEqual(t.testf3, [1])
self.assertEqual(t.testf4, set([1]))
t.del_feature('testf4')
self.assertTrue('testf4' not in t.features)
def test_tree_read_and_write(self):
""" Tests newick support """
# Read and write newick tree from file (and support for NHX
# format): newick parser
with open("/tmp/etetemptree.nw","w") as OUT:
OUT.write(nw_full)
t = Tree("/tmp/etetemptree.nw")
t.write(outfile='/tmp/etewritetest.nw')
self.assertEqual(nw_full, t.write(features=["flag","mood"]))
self.assertEqual(nw_topo, t.write(format=9))
self.assertEqual(nw_dist, t.write(format=5))
# Read and write newick tree from *string* (and support for NHX
# format)
t = Tree(nw_full)
self.assertEqual(nw_full, t.write(features=["flag","mood"]))
self.assertEqual(nw_topo, t.write(format=9))
self.assertEqual( nw_dist, t.write(format=5))
# Read complex newick
t = Tree(nw2_full)
self.assertEqual(nw2_full, t.write())
# Read wierd topologies
t = Tree(nw_simple5)
self.assertEqual(nw_simple5, t.write(format=9))
t = Tree(nw_simple6)
self.assertEqual(nw_simple6, t.write(format=9))
#Read single node trees:
self.assertEqual(Tree("hola;").write(format=9), "hola;")
self.assertEqual(Tree("(hola);").write(format=9), "(hola);")
#Test export root features
t = Tree("(((A[&&NHX:name=A],B[&&NHX:name=B])[&&NHX:name=NoName],C[&&NHX:name=C])[&&NHX:name=I],(D[&&NHX:name=D],F[&&NHX:name=F])[&&NHX:name=J])[&&NHX:name=root];")
#print t.get_ascii()
self.assertEqual(t.write(format=9, features=["name"], format_root_node=True),
"(((A[&&NHX:name=A],B[&&NHX:name=B])[&&NHX:name=NoName],C[&&NHX:name=C])[&&NHX:name=I],(D[&&NHX:name=D],F[&&NHX:name=F])[&&NHX:name=J])[&&NHX:name=root];")
#Test exporting ordered features
t = Tree("((A,B),C);")
expected_nw = "((A:1[&&NHX:dist=1.0:name=A:support=1.0],B:1[&&NHX:0=0:1=1:2=2:3=3:4=4:5=5:6=6:7=7:8=8:9=9:a=a:b=b:c=c:d=d:dist=1.0:e=e:f=f:g=g:h=h:i=i:j=j:k=k:l=l:m=m:n=n:name=B:o=o:p=p:q=q:r=r:s=s:support=1.0:t=t:u=u:v=v:w=w])1:1[&&NHX:dist=1.0:name=:support=1.0],C:1[&&NHX:dist=1.0:name=C:support=1.0]);"
features = list("abcdefghijklmnopqrstuvw0123456789")
random.shuffle(features)
for letter in features:
(t & "B").add_feature(letter, letter)
self.assertEqual(expected_nw, t.write(features=[]))
# Node instance repr
self.assertTrue(Tree().__repr__().startswith('Tree node'))
def test_concat_trees(self):
t1 = Tree('((A, B), C);')
t2 = Tree('((a, b), c);')
concat_tree = t1 + t2
concat_tree.sort_descendants()
self.assertEqual(concat_tree.write(format=9), '(((A,B),C),((a,b),c));')
t3 = PhyloTree('((a, b), c);')
mixed_types = lambda: t1 + t3
self.assertRaises(TreeError, mixed_types)
def test_newick_formats(self):
""" tests different newick subformats """
from ..parser.newick import print_supported_formats, NW_FORMAT
print_supported_formats()
# Let's stress a bit
for i in range(10):
t = Tree()
t.populate(4, random_branches=True)
for f in NW_FORMAT:
self.assertEqual(t.write(format=f), Tree(t.write(format=f),format=f).write(format=f))
# Format 0 = ((H:1,(G:1,F:1)1:1)1:1,I:1)1:1;
# Format 1 = ((H:1,(G:1,F:1):1):1,I:1):1;
# Format 2 = ((H:1,(G:1,F:1)1:1)1:1,I:1)1:1;
# Format 3 = ((H:1,(G:1,F:1)NoName:1)NoName:1,I:1)NoName:1;
# Format 4 = ((H:1,(G:1,F:1)),I:1);
# Format 5 = ((H:1,(G:1,F:1):1):1,I:1):1;
# Format 6 = ((H,(G,F):1):1,I):1;
# Format 7 = ((H:1,(G:1,F:1)NoName)NoName,I:1)NoName;
# Format 8 = ((H,(G,F)NoName)NoName,I)NoName;
# Format 9 = ((H,(G,F)),I);
# Format 100 = ((,(,)),);
t = Tree()
t.populate(50, random_branches=True)
t.sort_descendants()
expected_distances = [round(x, 6) for x in [n.dist for n in t.traverse('postorder')]]
expected_leaf_distances = [round(x, 6) for x in [n.dist for n in t]]
expected_internal_distances = [round(x, 6) for x in [n.dist for n in t.traverse('postorder') if not n.is_leaf()]]
expected_supports = [round(x, 6) for x in [n.support for n in t.traverse('postorder') if not n.is_leaf()]]
expected_leaf_names = [n.name for n in t]
# Check that all formats read names correctly
for f in [0,1,2,3,5,6,7,8,9]:
t2 = Tree(t.write(format=f, dist_formatter="%0.6f", support_formatter="%0.6f", format_root_node=True), format=f)
t2.sort_descendants()
observed_names = [n.name for n in t]
self.assertEqual(observed_names, expected_leaf_names)
# Check that all formats reading distances, recover original distances
for f in [0,1,2,3,5]:
t2 = Tree(t.write(format=f, dist_formatter="%0.6f", support_formatter="%0.6f", format_root_node=True), format=f)
t2.sort_descendants()
observed_distances = [round(x, 6) for x in [n.dist for n in t2.traverse('postorder')]]
self.assertEqual(observed_distances, expected_distances)
# formats reading only leaf distances
for f in [4,7]:
t2 = Tree(t.write(format=f, dist_formatter="%0.6f", support_formatter="%0.6f", format_root_node=True), format=f)
t2.sort_descendants()
observed_distances = [round(x, 6) for x in [n.dist for n in t2]]
self.assertEqual(observed_distances, expected_leaf_distances)
# formats reading only leaf distances
for f in [6]:
t2 = Tree(t.write(format=f, dist_formatter="%0.6f", support_formatter="%0.6f", format_root_node=True), format=f)
t2.sort_descendants()
observed_distances = [round(x, 6) for x in [n.dist for n in t2.traverse('postorder') if not n.is_leaf()]]
self.assertEqual(observed_distances, expected_internal_distances)
# Check that all formats reading supports, recover original distances
#print t.get_ascii(attributes=["support"])
for f in [0,2]:
t2 = Tree(t.write(format=f, dist_formatter="%0.6f", support_formatter="%0.6f", format_root_node=True), format=f)
t2.sort_descendants()
observed_supports = [round(x, 6) for x in [n.support for n in t2.traverse('postorder') if not n.is_leaf()]]
self.assertEqual(observed_supports, expected_supports)
# Check that formats reading supports, do not accept node names
for f in [0,2]:
# format 3 forces dumping internal node names, NoName in case is missing
self.assertRaises(Exception, Tree, t.write(format=3), format=f)
# Check that formats reading names, do not load supports
for f in [1, 3]:
# format 3 forces dumping internal node names, NoName in case is missing
t2 = Tree(t.write(format=0), format=f)
default_supports = set([n.support for n in t2.traverse()])
self.assertEqual(set([1.0]), default_supports)
# Check errors reading numbers
error_nw1 = "((A:0.813705,(E:0.545591,D:0.411772)error:0.137245)1.000000:0.976306,C:0.074268);"
for f in [0, 2]:
self.assertRaises(NewickError, Tree, error_nw1, format=f)
error_nw2 = "((A:0.813705,(E:0.545error,D:0.411772)1.0:0.137245)1.000000:0.976306,C:0.074268);"
for f in [0, 1, 2]:
self.assertRaises(NewickError, Tree, error_nw2, format=f)
error_nw3 = "((A:0.813705,(E:0.545error,D:0.411772)1.0:0.137245)1.000000:0.976306,C:0.074268);"
for f in [0, 1, 2]:
self.assertRaises(NewickError, Tree, error_nw2, format=f)
# Check errors derived from reading names with weird or illegal chars
base_nw = "((NAME1:0.813705,(NAME2:0.545,NAME3:0.411772)NAME6:0.137245)NAME5:0.976306,NAME4:0.074268);"
valid_names = ['[name]', '[name', '"name"', "'name'", "'name", 'name', '[]\'"&%$!*.']
error_names = ['error)', '(error', "erro()r", ":error", "error:", "err:or", ",error", "error,"]
for ename in error_names:
#print ename, base_nw.replace('NAME2', ename)
self.assertRaises(NewickError, Tree, base_nw.replace('NAME2', ename), format=1)
if not ename.startswith(','):
#print ename, base_nw.replace('NAME6', ename)
self.assertRaises(NewickError, Tree, base_nw.replace('NAME6', ename), format=1)
for vname in valid_names:
expected_names = set(['NAME1', vname, 'NAME3', 'NAME4'])
#print set([n.name for n in Tree(base_nw.replace('NAME2', vname), format=1)])
self.assertEqual(set([n.name for n in Tree(base_nw.replace('NAME2', vname), format=1)]),
expected_names)
# invalid NHX format
self.assertRaises(NewickError, Tree, "(((A, B), C)[&&NHX:nameI]);")
# unsupported newick stream
self.assertRaises(NewickError, Tree, [1,2,3])
def test_quoted_names(self):
complex_name = "((A:0.0001[&&NHX:hello=true],B:0.011)90:0.01[&&NHX:hello=true],(C:0.01, D:0.001)hello:0.01);"
# A quoted tree within a tree
nw1 = '(("A:0.1":1,"%s":2)"C:0.00":3,"D":4);' %complex_name
#escaped quotes
nw2 = '''(("A:\\"0.1\\"":1,"%s":2)"C:'0.00'":3,"D'sd''\'":4);''' %complex_name
for nw in [nw1, nw2]:
self.assertRaises(NewickError, Tree, newick=nw)
self.assertRaises(NewickError, Tree, newick=nw, quoted_node_names=True, format=0)
t = Tree(newick=nw, format=1, quoted_node_names=True)
self.assertTrue(any(n for n in t if n.name == '%s'%complex_name))
# test writing and reloading tree
nw_back = t.write(quoted_node_names=True, format=1)
t2 = Tree(newick=nw, format=1, quoted_node_names=True)
nw_back2 = t2.write(quoted_node_names=True, format=1)
self.assertEqual(nw, nw_back)
self.assertEqual(nw, nw_back2)
def test_custom_formatting_formats(self):
""" test to change dist, name and support formatters """
t = Tree('((A:1.111111, B:2.222222)C:3.33333, D:4.44444);', format=1)
t.sort_descendants()
check = [[0, '((TEST-A:1.1,TEST-B:2.2)SUP-1.0:3.3,TEST-D:4.4);'],
[1, '((TEST-A:1.1,TEST-B:2.2)TEST-C:3.3,TEST-D:4.4);'],
[2, '((TEST-A:1.1,TEST-B:2.2)SUP-1.0:3.3,TEST-D:4.4);'],
[3, '((TEST-A:1.1,TEST-B:2.2)TEST-C:3.3,TEST-D:4.4);'],
[4, '((TEST-A:1.1,TEST-B:2.2),TEST-D:4.4);'],
[5, '((TEST-A:1.1,TEST-B:2.2):3.3,TEST-D:4.4);'],
[6, '((TEST-A,TEST-B):3.3,TEST-D);'],
[7, '((TEST-A:1.1,TEST-B:2.2)TEST-C,TEST-D:4.4);'],
[8, '((TEST-A,TEST-B)TEST-C,TEST-D);'],
[9, '((TEST-A,TEST-B),TEST-D);']]
for f, result in check:
nw = t.write(format=f, dist_formatter="%0.1f", name_formatter="TEST-%s", support_formatter="SUP-%0.1f")
self.assertEqual(nw, result)
def test_tree_manipulation(self):
""" tests operations which modify tree topology """
nw_tree = "((Hola:1,Turtle:1.3)1:1,(A:0.3,B:2.4)1:0.43);"
# Manipulate Topologies
# Adding and removing nodes (add_child, remove_child,
# add_sister, remove_sister). The resulting newick tree should
# match the nw_tree defined before.
t = Tree()
remove_child_except = lambda: t.remove_child(t)
add_sister_except = lambda: t.add_sister()
self.assertRaises(TreeError, remove_child_except)
self.assertRaises(TreeError, add_sister_except)
c1 = t.add_child(dist=1, support=1)
c2 = t.add_child(dist=0.43, support=1)
n = TreeNode(name="Hola", dist=1, support=1)
_n = c1.add_child(n)
c3 = _n.add_sister(name="Turtle", dist="1.3")
c4 = c2.add_child(name="A", dist="0.3")
c5 = c2.add_child(name="todelete")
_c5 = c2.remove_child(c5)
c6 = c2.add_child(name="todelete")
_c6 = c4.remove_sister()
c7 = c2.add_child(name="B", dist=2.4)
self.assertEqual(nw_tree, t.write())
self.assertEqual(_c5, c5)
self.assertEqual(_c6, c6)
self.assertEqual(_n, n)
# Delete,
t = Tree("(((A, B), C)[&&NHX:name=I], (D, F)[&&NHX:name=J])[&&NHX:name=root];")
D = t.search_nodes(name="D")[0]
F = t.search_nodes(name="F")[0]
J = t.search_nodes(name="J")[0]
root = t.search_nodes(name="root")[0]
J.delete()
self.assertEqual(J.up, None)
self.assertEqual(J in t, False)
self.assertEqual(D.up, root)
self.assertEqual(F.up, root)
# Delete preventing non dicotomic
t = Tree('((((A:1,B:1):1,C:1):1,D:1):1,E:1);')
orig_dist = t.get_distance('A')
C = t&('C')
C.delete(preserve_branch_length=True)
self.assertEqual(orig_dist, t.get_distance('A'))
t = Tree('((((A:1,B:1):1,C:1):1,D:1):1,E:1);')
orig_dist = t.get_distance('A')
C = t&('C')
C.delete(preserve_branch_length=False)
self.assertEqual(orig_dist, t.get_distance('A')+1)
t = Tree('((((A:1,B:1):1,C:1):1,D:1):1,E:1);')
orig_dist = t.get_distance('A')
C = t&('C')
C.delete(prevent_nondicotomic=False)
self.assertEqual(orig_dist, t.get_distance('A'))
#detach
t = Tree("(((A, B)[&&NHX:name=H], C)[&&NHX:name=I], (D, F)[&&NHX:name=J])[&&NHX:name=root];")
D = t.search_nodes(name="D")[0]
F = t.search_nodes(name="F")[0]
J = t.search_nodes(name="J")[0]
root = t.search_nodes(name="root")[0]
J.detach()
self.assertEqual(J.up, None)
self.assertEqual(J in t, False)
self.assertEqual(set([n.name for n in t.iter_descendants()]),set(["A","B","C","I","H"]))
# sorting branches
t1 = Tree('((A,B),(C,D,E,F), (G,H,I));')
t1.ladderize()
self.assertEqual(t1.get_leaf_names(), [_ for _ in 'ABGHICDEF'])
t1.ladderize(direction=1)
self.assertEqual(t1.get_leaf_names(), [_ for _ in 'FEDCIHGBA'])
t1.sort_descendants()
self.assertEqual(t1.get_leaf_names(), [_ for _ in 'ABCDEFGHI'])
# prune
t1 = Tree("(((A, B), C)[&&NHX:name=I], (D, F)[&&NHX:name=J])[&&NHX:name=root];")
D1 = t1.search_nodes(name="D")[0]
t1.prune(["A","C", D1])
sys.stdout.flush()
self.assertEqual(set([n.name for n in t1.iter_descendants()]), set(["A","C","D","I"]))
t1 = Tree("(((A, B), C)[&&NHX:name=I], (D, F)[&&NHX:name=J])[&&NHX:name=root];")
D1 = t1.search_nodes(name="D")[0]
t1.prune(["A","B"])
self.assertEqual( t1.write(), "(A:1,B:1);")
# test prune keeping internal nodes
t1 = Tree('(((((A,B)C)D,E)F,G)H,(I,J)K)root;', format=1)
#print t1.get_ascii()
t1.prune(['A', 'B', 'F', 'H'])
#print t1.get_ascii()
self.assertEqual(set([n.name for n in t1.traverse()]),
set(['A', 'B', 'F', 'H', 'root']))
t1 = Tree('(((((A,B)C)D,E)F,G)H,(I,J)K)root;', format=1)
#print t1.get_ascii()
t1.prune(['A', 'B'])
#print t1.get_ascii()
self.assertEqual(set([n.name for n in t1.traverse()]),
set(['A', 'B', 'root']))
t1 = Tree('(((((A,B)C)D,E)F,G)H,(I,J)K)root;', format=1)
#print t1.get_ascii()
t1.prune(['A', 'B', 'C'])
#print t1.get_ascii()
self.assertEqual(set([n.name for n in t1.traverse()]),
set(['A', 'B', 'C', 'root']))
t1 = Tree('(((((A,B)C)D,E)F,G)H,(I,J)K)root;', format=1)
#print t1.get_ascii()
t1.prune(['A', 'B', 'I'])
#print t1.get_ascii()
self.assertEqual(set([n.name for n in t1.traverse()]),
set(['A', 'B', 'C', 'I', 'root']))
def test_pruninig(self):
# test prune preserving distances
for i in range(10):
t = Tree()
t.populate(40, random_branches=True)
orig_nw = t.write()
distances = {}
for a in t.iter_leaves():
for b in t.iter_leaves():
distances[(a,b)] = round(a.get_distance(b), 6)
to_keep = set(random.sample(t.get_leaves(), 6))
t.prune(to_keep, preserve_branch_length=True)
for a,b in distances:
if a in to_keep and b in to_keep:
self.assertEqual(distances[(a,b)], round(a.get_distance(b), 6))
# Total number of nodes is correct (no single child nodes)
for x in range(10):
t_fuzzy = Tree("(((A,B)1, C)2,(D,E)3)root;", format=1)
t_fuzzy.sort_descendants()
orig_nw = t_fuzzy.write()
ref_nodes = t_fuzzy.get_leaves()
t_fuzzy.populate(10)
(t_fuzzy&'1').populate(3)
(t_fuzzy&'2').populate(5)
(t_fuzzy&'3').populate(5)
t_fuzzy.prune(ref_nodes)
t_fuzzy.sort_descendants()
self.assertEqual(orig_nw, t_fuzzy.write())
self.assertEqual(len(t_fuzzy.get_descendants()), (len(ref_nodes)*2)-2 )
# Total number of nodes is correct (no single child nodes)
t = Tree()
sample_size = 5
t.populate(1000)
sample = random.sample(t.get_leaves(), sample_size)
t.prune(sample)
self.assertEqual(len(t), sample_size)
self.assertEqual(len(t.get_descendants()), (sample_size*2)-2 )
# Test preserve branch dist when pruning
t = Tree()
t.populate(100, random_branches=True)
orig_leaves = t.get_leaves()
sample_size = 50
sample= random.sample(t.get_leaves(), sample_size)
matrix1 = ["%f" %t.get_distance(a, b) for (a,b) in itertools.product(sample, sample)]
t.prune(sample, preserve_branch_length=True)
matrix2 = ["%f" %t.get_distance(a, b) for (a,b)in itertools.product(sample, sample)]
self.assertEqual(matrix1, matrix2)
self.assertEqual(len(t.get_descendants()), (sample_size*2)-2 )
def test_resolve_polytomies(self):
# resolve polytomy
t = Tree("((a,a,a,a), (b,b,b,(c,c,c)));")
t.resolve_polytomy()
t.ladderize()
self.assertEqual(t.write(format=9), "((a,(a,(a,a))),(b,(b,(b,(c,(c,c))))));")
t = Tree("((((a,a,a,a))), (b,b,b,(c,c,c)));")
t.standardize()
t.ladderize()
self.assertEqual(t.write(format=9), "((a,(a,(a,a))),(b,(b,(b,(c,(c,c))))));")
def test_common_ancestors(self):
# getting nodes, get_childs, get_sisters, get_tree_root,
# get_common_ancestor, get_nodes_by_name
# get_descendants_by_name, is_leaf, is_root
t = Tree("(((A,B)N1,C)N2[&&NHX:tag=common],D)[&&NHX:tag=root:name=root];", format=1)
self.assertEqual(t.get_sisters(), [])
A = t.search_nodes(name="A")[0]
B = t.search_nodes(name="B")[0]
C = t.search_nodes(name="C")[0]
root = (t&"root")
self.assertEqual("A", A.name)
test_not_found = lambda: t&'noffound'
self.assertRaises(TreeError, test_not_found)
self.assertEqual("common", A.get_common_ancestor(C).tag)
self.assertEqual("common", A.get_common_ancestor([C]).tag)
self.assertEqual("common", t.get_common_ancestor(A, C).tag)
self.assertEqual("common", A.get_common_ancestor(C, B).tag)
self.assertEqual(root, t.get_common_ancestor([A, "D"]))
self.assertEqual("root", A.get_tree_root().tag)
self.assertEqual("root", B.get_tree_root().tag)
self.assertEqual("root", C.get_tree_root().tag)
common = A.get_common_ancestor(C)
self.assertEqual("root", common.get_tree_root().tag)
self.assertTrue(common.get_tree_root().is_root())
self.assertTrue(not A.is_root())
self.assertTrue(A.is_leaf())
self.assertTrue(not A.get_tree_root().is_leaf())
self.assertRaises(TreeError, A.get_common_ancestor, Tree())
# Test multiple target nodes and get_path argument
common, path = t.get_common_ancestor(['A', 'C'], get_path=True)
N1 = t & "N1"
N2 = t & "N2"
expected_path = {A: set([A, root, N1, N2]), C: set([C, N2, root])}
self.assertEqual(common, N2)
self.assertEqual(path.keys(), expected_path.keys())
for k in path.keys():
self.assertEqual(list(sorted(path[k], key=lambda x: x.name)),
list(sorted(expected_path[k], key=lambda x: x.name)))
# Test common ancestor function using self as single argument (issue #398)
common = A.get_common_ancestor(A)
self.assertEqual(common, A)
common = C.get_common_ancestor("C")
self.assertEqual(common, C)
common, path = C.get_common_ancestor("C", get_path=True)
self.assertEqual(common, C)
self.assertDictEqual(path, {})
def test_getters_iters(self):
# Iter ancestors
t = Tree("(((((a,b)A,c)B,d)C,e)D,f)root;", format=1)
ancestor_names = [n.name for n in (t&"a").get_ancestors()]
self.assertEqual(ancestor_names, ["A", "B", "C", "D", "root"])
ancestor_names = [n.name for n in (t&"B").get_ancestors()]
self.assertEqual(ancestor_names, ["C", "D", "root"])
# Tree magic python features
t = Tree(nw_dflt)
self.assertEqual(len(t), 20)
self.assertTrue("Ddi0002240" in t)
self.assertTrue(t.children[0] in t)
for a in t:
self.assertTrue(a.name)
# Populate
t = Tree(nw_full)
prev_size= len(t)
t.populate(25)
self.assertEqual(len(t), prev_size+25)
for i in range(10):
t = Tree()
t.populate(100, reuse_names=False)
# Checks that all names are actually unique
self.assertEqual(len(set(t.get_leaf_names())), 100)
# Adding and removing features
t = Tree("(((A,B),C)[&&NHX:tag=common],D)[&&NHX:tag=root];")
A = t.search_nodes(name="A")[0]
# Check gettters and itters return the same
t = Tree(nw2_full)
self.assertEqual(t.get_leaf_names(), [name for name in t.iter_leaf_names()])
self.assertEqual(t.get_leaves(), [name for name in t.iter_leaves()])
self.assertEqual(t.get_descendants(), [n for n in t.iter_descendants()])
self.assertEqual(set([n for n in t.traverse("preorder")]), \
set([n for n in t.traverse("postorder")]))
self.assertTrue(t in set([n for n in t.traverse("preorder")]))
# Check order or visiting nodes
t = Tree("((3,4)2,(6,7)5)1;", format=1)
#t = Tree("(((A, B)C, (D, E)F)G, (H, (I, J)K)L)M;", format=1)
#postorder = [c for c in "ABCDEFGHIJKLM"]
#preorder = [c for c in reversed(postorder)]
#levelorder = [c for c in "MGLCFHKABDEIJ"]
postorder = "3426751"
preorder = "1234567"
levelorder = "1253467"
self.assertEqual(preorder,
''.join([n.name for n in t.traverse("preorder")]))
self.assertEqual(postorder,
''.join([n.name for n in t.traverse("postorder")]))
self.assertEqual(levelorder,
''.join([n.name for n in t.traverse("levelorder")]))
# Swap childs
n = t.get_children()
t.swap_children()
n.reverse()
self.assertEqual(n, t.get_children())
def test_distances(self):
# Distances: get_distance, get_farthest_node,
# get_farthest_descendant, get_midpoint_outgroup
t = Tree("(((A:0.1, B:0.01):0.001, C:0.0001):1.0[&&NHX:name=I], (D:0.00001):0.000001[&&NHX:name=J]):2.0[&&NHX:name=root];")
A = t.search_nodes(name="A")[0]
B = t.search_nodes(name="B")[0]
C = t.search_nodes(name="C")[0]
D = t.search_nodes(name="D")[0]
I = t.search_nodes(name="I")[0]
J = t.search_nodes(name="J")[0]
root = t.search_nodes(name="root")[0]
self.assertEqual(A.get_common_ancestor(I).name, "I")
self.assertEqual(A.get_common_ancestor(D).name, "root")
self.assertEqual(A.get_distance(I), 0.101)
self.assertEqual(A.get_distance(B), 0.11)
self.assertEqual(A.get_distance(A), 0)
self.assertEqual(I.get_distance(I), 0)
self.assertEqual(A.get_distance(root), root.get_distance(A))
self.assertEqual(t.get_distance(A, root), root.get_distance(A))
self.assertEqual(t.get_distance(root, A), A.get_distance(root))
# Get_farthest_node, get_farthest_leaf
self.assertEqual(root.get_farthest_leaf(), (A,1.101) )
self.assertEqual(root.get_farthest_node(), (A,1.101) )
self.assertEqual(A.get_farthest_leaf(), (A, 0.0))
self.assertEqual(A.get_farthest_node(), (D, 1.101011))
self.assertEqual(I.get_farthest_node(), (D, 1.000011))
# Topology only distances
t = Tree('(((A:0.5, B:1.0):1.0, C:5.0):1, (D:10.0, F:1.0):2.0):20;')
self.assertEqual(t.get_closest_leaf(), (t&'A', 2.5))
self.assertEqual(t.get_farthest_leaf(), (t&'D', 12.0))
self.assertEqual(t.get_farthest_leaf(topology_only=True), (t&'A', 2.0))
self.assertEqual(t.get_closest_leaf(topology_only=True), (t&'C', 1.0))
self.assertEqual(t.get_distance(t), 0.0)
self.assertEqual(t.get_distance(t, topology_only=True), 0.0)
self.assertEqual(t.get_distance(t&'A', topology_only=True), 2.0)
self.assertEqual((t&'F').get_farthest_node(topology_only=True), (t&'A', 3.0))
self.assertEqual((t&'F').get_farthest_node(topology_only=False), (t&'D', 11.0))
def test_rooting(self):
# Test set_outgroup and get_midpoint_outgroup
t = Tree(nw2_full)
YGR028W = t.get_leaves_by_name("YGR028W")[0]
YGR138C = t.get_leaves_by_name("YGR138C")[0]
d1 = YGR138C.get_distance(YGR028W)
nodes = t.get_descendants()
t.set_outgroup(t.get_midpoint_outgroup())
o1, o2 = t.children[0], t.children[1]
nw_original = t.write()
d2 = YGR138C.get_distance(YGR028W)
self.assertEqual(d1, d2)
# Randomizing outgroup test: Can we recover original state
# after many manipulations?
for i in range(10):
for j in range(1000):
n = random.sample(nodes, 1)[0]
t.set_outgroup(n)
t.set_outgroup(t.get_midpoint_outgroup())
self.assertEqual(set([t.children[0], t.children[1]]), set([o1, o2]))
## I need to sort branches first
#self.assertEqual(t.write(), nw_original)
d3 = YGR138C.get_distance(YGR028W)
self.assertEqual(d1, d3)
t = Tree('(A,B,(C,D)E)root;', format=1);
t.sort_descendants()
nw_unrooted = t.write()
t.set_outgroup(t.get_common_ancestor('C', 'D'));
t.unroot()
t.sort_descendants()
self.assertEqual(nw_unrooted, t.write())
t = Tree('(A:10,B:1,(C:1,D:1)E:1)root;', format=1);
t.set_outgroup(t.get_midpoint_outgroup())
self.assertEqual(t.children[0].dist, 5.0)
self.assertEqual(t.children[1].dist, 5.0)
def test_unroot(self):
t = Tree("(('a':0.5, 'b':0.5):0.5, ('c':0.2, 'd':0.2):0.8):1;" )
t2 = Tree("(('a':0.5, 'b':0.5):0.5, ('c':0.2, 'd':0.2):0.8):1;" )
t.unroot(mode="keep")
with self.assertRaises(ValueError):
t.unroot(mode="new")
t2.unroot(mode="legacy")
self.assertEqual("(('c':0.2,'d':0.2)1:1.3,'a':0.5,'b':0.5);", t.write())
self.assertEqual("(('c':0.2,'d':0.2)1:0.8,'a':0.5,'b':0.5);", t2.write())
def test_tree_navigation(self):
t = Tree("(((A, B)H, C)I, (D, F)J)root;", format=1)
postorder = [n.name for n in t.traverse("postorder")]
preorder = [n.name for n in t.traverse("preorder")]
levelorder = [n.name for n in t.traverse("levelorder")]
self.assertEqual(postorder, ['A', 'B', 'H', 'C', 'I', 'D', 'F', 'J', 'root'])
self.assertEqual(preorder, ['root', 'I', 'H', 'A', 'B', 'C', 'J', 'D', 'F'])
self.assertEqual(levelorder, ['root', 'I', 'J', 'H', 'C', 'D', 'F', 'A', 'B'])
ancestors = [n.name for n in (t&"B").get_ancestors()]
self.assertEqual(ancestors, ["H", "I", "root"])
self.assertEqual(t.get_ancestors(), [])
# add something of is_leaf_fn etc...
custom_test = lambda x: x.name in set("JCH")
custom_leaves = t.get_leaves(is_leaf_fn=custom_test)
self.assertEqual(set([n.name for n in custom_leaves]), set("JHC"))
# Test cached content
t = Tree()
t.populate(20)
cache_node = t.get_cached_content()
cache_node_leaves_only_false = t.get_cached_content(leaves_only=False)
self.assertEqual(cache_node[t], set(t.get_leaves()))
self.assertEqual(cache_node_leaves_only_false[t], set(t.traverse()))
cache_name = t.get_cached_content(store_attr="name")
cache_name_leaves_only_false = t.get_cached_content(store_attr="name", leaves_only=False)
self.assertEqual(cache_name[t], set(t.get_leaf_names()))
self.assertEqual(cache_name_leaves_only_false[t], set([n.name for n in t.traverse()]))
cache_many = t.get_cached_content(store_attr=["name", "dist", "support"])
cache_many_lof = t.get_cached_content(store_attr=["name", "dist", "support"], leaves_only=False)
self.assertEqual(cache_many[t], set([(leaf.name, leaf.dist, leaf.support) for leaf in t.get_leaves()]))
self.assertEqual(cache_many_lof[t], set([(n.name, n.dist, n.support) for n in t.traverse()]))
#self.assertEqual(cache_name_lof[t], [t.name])
def test_rooting(self):
""" Check branch support and distances after rooting """
t = Tree("((((a,b)1,c)2,i)3,(e,d)4)5;", format=1)
t.set_outgroup(t&"a")
t = Tree("(((a,b)2,c)x)9;", format=1)
t.set_outgroup(t&"a")
# Test branch support and distances after rooting
SIZE = 35
t = Tree()
t.populate(SIZE, reuse_names=False)
t.unroot()
for n in t.iter_descendants():
if n is not t:
n.support = random.random()
n.dist = random.random()
for n in t.children:
n.support = 0.999
t2 = t.copy()
names = set(t.get_leaf_names())
cluster_id2support = {}
cluster_id2dist = {}
for n in t.traverse():
cluster_names = set(n.get_leaf_names())
cluster_names2 = names - cluster_names
cluster_id = '_'.join(sorted(cluster_names))
cluster_id2 = '_'.join(sorted(cluster_names2))
cluster_id2support[cluster_id] = n.support
cluster_id2support[cluster_id2] = n.support
cluster_id2dist[cluster_id] = n.dist
cluster_id2dist[cluster_id2] = n.dist
for i in range(100):
outgroup = random.sample(t2.get_descendants(), 1)[0]
t2.set_outgroup(outgroup)
for n in t2.traverse():
cluster_names = set(n.get_leaf_names())
cluster_names2 = names - cluster_names
cluster_id = '_'.join(sorted(cluster_names))
cluster_id2 = '_'.join(sorted(cluster_names2))
self.assertEqual(cluster_id2support.get(cluster_id, None), n.support)
self.assertEqual(cluster_id2support.get(cluster_id2, None), n.support)
if n.up and n.up.up:
self.assertEqual(cluster_id2dist.get(cluster_id, None), n.dist)
# Test unrooting
t = Tree()
t.populate(20)
t.unroot()
# Printing and info
text = t.get_ascii()
Tree().describe()
Tree('(a,b,c);').describe()
Tree('(a,(b,c));').describe()
def test_treeid(self):
t = Tree()
t.populate(50, random_branches=True)
orig_id = t.get_topology_id()
nodes = t.get_descendants()
for i in range(20):
for n in random.sample(nodes, 10):
n.swap_children()
self.assertEqual(t.get_topology_id(), orig_id)
def test_ultrametric(self):
# Convert tree to a ultrametric topology in which distance from
# leaf to root is always 100. Two strategies are available:
# balanced or fixed
t = Tree()
t.populate(100, random_branches=True)
t.convert_to_ultrametric(100, "balanced")
self.assertEqual(set([round(t.get_distance(n), 6) for n in t]), set([100.0]))
t = Tree()
t.populate(100, random_branches=True)
t.convert_to_ultrametric(100, "fixed")
self.assertEqual(set([round(t.get_distance(n), 6) for n in t]), set([100.0]))
t = Tree()
t.populate(100, random_branches=True)
t.convert_to_ultrametric(100, "balanced")
self.assertEqual(set([round(t.get_distance(n), 6) for n in t]), set([100.0]))
def test_expand_polytomies_rf(self):
gtree = Tree('((a:1, (b:1, (c:1, d:1):1):1), (e:1, (f:1, g:1):1):1);')
ref1 = Tree('((a:1, (b:1, c:1, d:1):1):1, (e:1, (f:1, g:1):1):1);')
ref2 = Tree('((a:1, (b:1, c:1, d:1):1):1, (e:1, f:1, g:1):1);')
for ref in [ref1, ref2]:
#print gtree, ref
gtree.robinson_foulds(ref, expand_polytomies=True)[0]
gtree = Tree('((g, h), (a, (b, (c, (d,( e, f))))));')
ref3 = Tree('((a, b, c, (d, e, f)), (g, h));')
ref4 = Tree('((a, b, c, d, e, f), (g, h));')
ref5 = Tree('((a, b, (c, d, (e, f))), (g, h));')
for ref in [ref3, ref4, ref5]:
#print gtree, ref
gtree.robinson_foulds(ref, expand_polytomies=True, polytomy_size_limit=8)[0]
gtree = Tree('((g, h), (a, b, (c, d, (e, f))));')
ref6 = Tree('((a, b, (c, d, e, f)), (g, h));')
ref7 = Tree('((a, (b, (c, d, e, f))), (g, h));')
ref8 = Tree('((a, b, c, (d, e, f)), (g, h));')
ref9 = Tree('((d, b, c, (a, e, f)), (g, h));')
for ref in [ref6, ref7, ref8, ref9]:
#print gtree, ref
gtree.robinson_foulds(ref, expand_polytomies=True)[0]
#print "REF GOOD", gtree.robinson_foulds(ref, expand_polytomies=True, polytomy_size_limit=8)[0]
gtree = Tree('((g, h), ((a, b), (c, d), (e, f)));')
ref10 = Tree('((g, h), ((a, c), ((b, d), (e, f))));')
for ref in [ref10]:
#print gtree, ref
gtree.robinson_foulds(ref, expand_polytomies=True, polytomy_size_limit=8)[0]
def test_tree_compare(self):
def _astuple(d):
keynames = ["norm_rf", "rf", "max_rf", "ref_edges_in_source", "source_edges_in_ref", "effective_tree_size", "source_subtrees", "treeko_dist"]
# print
# print "ref", len(d["ref_edges"])
# print "src", len(d["source_edges"])
# print "common", len(d["common_edges"]), d['common_edges']
# print d["rf"], d["max_rf"]
return tuple([d[v] for v in keynames])
ref1 = Tree('((((A, B)0.91, (C, D))0.9, (E,F)0.96), (G, H));')
ref2 = Tree('(((A, B)0.91, (C, D))0.9, (E,F)0.96);')
s1 = Tree('(((A, B)0.9, (C, D))0.9, (E,F)0.9);')
small = Tree("((A, B), C);")
# RF unrooted in too small trees for rf, but with at least one internal node
self.assertEqual(_astuple(small.compare(ref1, unrooted=True)),
("NA", "NA", 0.0, 1.0, 1.0, 3, 1, "NA"))
small = Tree("(A, B);")
# RF unrooted in too small trees
self.assertEqual(_astuple(small.compare(ref1, unrooted=True)),
("NA", "NA", 0.0, "NA", "NA", 2, 1, "NA"))
small = Tree("(A, B);")
# RF unrooted in too small trees
self.assertEqual(_astuple(small.compare(ref1, unrooted=False)),
("NA", "NA", 0.0, "NA", "NA", 2, 1, "NA"))
# identical trees, 8 rooted partitions in total (4 an 4), and 6 unrooted
self.assertEqual(_astuple(s1.compare(ref1)),
(0.0, 0.0, 8, 1.0, 1.0, 6, 1, "NA"))
self.assertEqual(_astuple(s1.compare(ref1, unrooted=True)),
(0.0, 0.0, 6, 1.0, 1.0, 6, 1, "NA"))
# The same stats should be return discarding branches, as the topology
# is still identical, but branches used should be different
self.assertEqual(_astuple(s1.compare(ref1, min_support_source=0.99, min_support_ref=.99)),
(0.0, 0.0, 2, 1.0, 1.0, 6, 1, "NA"))
self.assertEqual(_astuple(s1.compare(ref1, min_support_source=0.99, min_support_ref=.99, unrooted=True)),
(0.0, 0.0, 2, 1.0, 1.0, 6, 1, "NA"))
self.assertEqual(_astuple(s1.compare(ref1, min_support_source=0.99)),
(0.0, 0.0, 5, 1/4., 1.0, 6, 1, "NA"))
self.assertEqual(_astuple(s1.compare(ref1, min_support_source=0.99, unrooted=True)),
(0.0, 0.0, 4, 6/8., 1.0, 6, 1, "NA"))
self.assertEqual(_astuple(s1.compare(ref1, min_support_ref=0.99)),
(0.0, 0.0, 5, 1.0, 1/4., 6, 1, "NA"))
self.assertEqual(_astuple(s1.compare(ref1, min_support_ref=0.99, unrooted=True)),
(0.0, 0.0, 4, 1.0, 6/8., 6, 1, "NA"))
# Three partitions different
s2 = Tree('(((A, E)0.9, (C, D))0.98, (B,F)0.95);')
self.assertEqual(_astuple(s2.compare(ref1)),
(6/8., 6, 8, 1/4., 1/4., 6, 1, "NA"))
self.assertEqual(_astuple(s2.compare(ref1, unrooted=True)),
(4/6., 4, 6, 6/8., 6/8., 6, 1, "NA"))
# lets discard one branch from source tree. there are 4 valid edges in
# ref, 3 in source there is only 2 edges in common, CD and root (which
# should be discounted for % of found branches)
self.assertEqual(_astuple(s2.compare(ref1, min_support_source=0.95)),
(5/7., 5, 7, 1/4., 1/3., 6, 1, "NA"))
# similar in unrooted, but we don not need to discount root edges
self.assertEqual(_astuple(s2.compare(ref1, min_support_source=0.95, unrooted=True)),
(3/5., 3, 5, 6/8., 6/7., 6, 1, "NA"))
# totally different trees
s3 = Tree('(((A, C)0.9, (E, D))0.98, (B,F)0.95);')
self.assertEqual(_astuple(s3.compare(ref1)),
(1.0, 8, 8, 0.0, 0.0, 6, 1, "NA"))
def test_tree_diff(self):
# this is the result of 100 Ktreedist runs on random trees, using rooted
# and unrooted topologies. ETE should provide the same RF result
samples = [
[28, True, '(((z,y),(x,(w,v))),(u,t),((s,r),((q,(p,o)),((n,(m,(l,(k,j)))),(i,(h,g))))));', '(((k,(j,(i,(h,g)))),z),(y,x),((w,v),((u,(t,(s,(r,q)))),(p,(o,(n,(m,l)))))));'],
[28, False, '(((t,s),((r,(q,p)),(o,n))),(((m,(l,(k,j))),(i,(h,g))),(z,(y,(x,(w,(v,u)))))));', '((((k,(j,i)),((h,g),z)),((y,(x,w)),((v,(u,t)),(s,(r,(q,p)))))),((o,n),(m,l)));'],
[18, True, '(((v,(u,(t,s))),((r,(q,(p,o))),((n,m),(l,k)))),(j,(i,(h,g))),(z,(y,(x,w))));', '(((z,(y,(x,w))),(v,(u,(t,s)))),((r,(q,p)),(o,(n,m))),((l,(k,(j,i))),(h,g)));'],
[26, True, '(((l,k),(j,i)),((h,g),(z,(y,(x,w)))),((v,(u,(t,(s,(r,q))))),((p,o),(n,m))));', '(((p,o),((n,(m,l)),(k,j))),((i,(h,g)),(z,y)),((x,(w,v)),((u,(t,s)),(r,q))));'],
[24, True, '(((o,(n,m)),(l,(k,(j,(i,(h,g)))))),(z,(y,x)),((w,v),((u,(t,(s,r))),(q,p))));', '(((t,(s,(r,(q,(p,o))))),(n,m)),((l,k),(j,(i,(h,g)))),((z,y),((x,w),(v,u))));'],
[24, True, '(((y,(x,(w,v))),(u,t)),((s,(r,(q,(p,o)))),(n,m)),((l,k),((j,(i,(h,g))),z)));', '(((z,(y,(x,w))),(v,(u,t))),(s,(r,(q,(p,(o,(n,(m,(l,k)))))))),(j,(i,(h,g))));'],
[28, False, '(((p,(o,(n,(m,l)))),((k,(j,i)),(h,g))),((z,y),((x,(w,(v,u))),(t,(s,(r,q))))));', '((((t,(s,r)),(q,p)),((o,n),(m,(l,(k,(j,i)))))),(((h,g),(z,(y,(x,w)))),(v,u)));'],
[28, True, '((((i,(h,g)),z),(y,x)),((w,v),((u,(t,(s,r))),(q,p))),((o,n),(m,(l,(k,j)))));', '((((h,g),z),(y,x)),(w,(v,u)),((t,s),((r,(q,p)),((o,(n,m)),(l,(k,(j,i)))))));'],
[28, True, '(((x,(w,(v,(u,(t,(s,(r,(q,(p,o))))))))),((n,(m,l)),(k,(j,i)))),(h,g),(z,y));', '(((u,t),(s,r)),((q,p),(o,(n,m))),(((l,(k,(j,i))),((h,g),(z,(y,x)))),(w,v)));'],
[22, False, '(((x,(w,(v,u))),((t,(s,r)),(q,p))),((o,(n,(m,l))),((k,j),((i,(h,g)),(z,y)))));', '(((z,(y,(x,(w,(v,u))))),(t,(s,r))),((q,(p,(o,(n,m)))),((l,k),(j,(i,(h,g))))));'],
[26, True, '((z,(y,(x,w))),(v,(u,(t,s))),((r,(q,(p,(o,(n,m))))),((l,k),(j,(i,(h,g))))));', '(((v,(u,t)),((s,r),((q,(p,o)),(n,(m,l))))),((k,j),((i,(h,g)),z)),(y,(x,w)));'],
[34, False, '((((i,(h,g)),(z,(y,x))),(w,v)),((u,t),((s,r),((q,(p,(o,n))),(m,(l,(k,j)))))));', '(((p,(o,(n,(m,(l,k))))),((j,i),(h,g))),(z,(y,(x,(w,(v,(u,(t,(s,(r,q))))))))));'],
[30, False, '(((i,(h,g)),(z,y)),((x,w),((v,(u,(t,(s,(r,q))))),(p,(o,(n,(m,(l,(k,j)))))))));', '((((l,k),(j,(i,(h,g)))),(z,(y,(x,w)))),((v,u),((t,s),((r,(q,p)),(o,(n,m))))));'],
[26, False, '(((v,(u,t)),((s,(r,q)),((p,o),((n,m),((l,k),(j,i)))))),((h,g),(z,(y,(x,w)))));', '(((y,(x,(w,v))),(u,(t,s))),(((r,q),((p,o),(n,(m,(l,k))))),((j,i),((h,g),z))));'],
[20, False, '(((u,(t,s)),(r,q)),(((p,o),((n,m),((l,k),((j,i),((h,g),z))))),(y,(x,(w,v)))));', '((((u,t),(s,r)),(((q,p),(o,(n,m))),(((l,k),(j,i)),((h,g),z)))),((y,x),(w,v)));'],
[20, True, '(((y,x),(w,v)),((u,(t,s)),((r,q),(p,(o,(n,(m,(l,k))))))),((j,(i,(h,g))),z));', '(((r,q),((p,o),(n,(m,(l,(k,j)))))),((i,(h,g)),(z,(y,(x,(w,v))))),(u,(t,s)));'],
[24, True, '((((k,(j,i)),(h,g)),((z,(y,(x,w))),((v,(u,t)),(s,r)))),(q,(p,(o,n))),(m,l));', '((((s,r),((q,p),(o,(n,m)))),((l,k),((j,i),((h,g),z)))),(y,x),(w,(v,(u,t))));'],
[18, True, '((w,(v,(u,(t,s)))),(r,q),((p,(o,n)),((m,(l,k)),((j,(i,(h,g))),(z,(y,x))))));', '(((y,x),((w,v),(u,(t,s)))),((r,(q,(p,(o,n)))),(m,l)),((k,j),((i,(h,g)),z)));'],
[26, True, '(((j,(i,(h,g))),(z,(y,(x,(w,(v,(u,t))))))),(s,r),((q,p),((o,(n,m)),(l,k))));', '(((s,(r,(q,(p,(o,(n,(m,l))))))),(k,j)),((i,(h,g)),(z,y)),((x,(w,v)),(u,t)));'],
[30, True, '((((r,(q,(p,(o,n)))),((m,l),(k,(j,i)))),((h,g),z)),(y,(x,(w,v))),(u,(t,s)));', '(((u,t),(s,r)),((q,p),(o,(n,(m,(l,(k,j)))))),(((i,(h,g)),(z,(y,x))),(w,v)));'],
[30, False, '((((m,(l,k)),(j,i)),(((h,g),(z,y)),(x,w))),((v,u),(t,(s,(r,(q,(p,(o,n))))))));', '(((u,t),((s,(r,q)),(p,(o,(n,(m,(l,k))))))),((j,(i,(h,g))),(z,(y,(x,(w,v))))));'],
[22, False, '(((k,(j,i)),(h,g)),((z,(y,x)),((w,(v,(u,(t,(s,r))))),((q,(p,(o,n))),(m,l)))));', '(((w,(v,u)),((t,(s,r)),((q,p),((o,(n,(m,l))),((k,(j,i)),((h,g),z)))))),(y,x));'],
[26, False, '(((x,(w,(v,(u,(t,s))))),(r,q)),((p,(o,(n,(m,l)))),((k,j),((i,(h,g)),(z,y)))));', '(((o,(n,m)),(l,(k,j))),(((i,(h,g)),(z,y)),((x,w),((v,u),((t,(s,r)),(q,p))))));'],
[28, True, '(((x,(w,v)),(u,(t,s))),((r,(q,(p,(o,(n,m))))),(l,(k,(j,(i,(h,g)))))),(z,y));', '((((i,(h,g)),(z,(y,x))),((w,v),((u,t),(s,(r,(q,p)))))),(o,n),((m,l),(k,j)));'],
[20, False, '((((m,l),(k,(j,(i,(h,g))))),(z,y)),((x,(w,(v,(u,(t,s))))),(r,(q,(p,(o,n))))));', '((((m,l),((k,(j,i)),(h,g))),(z,(y,(x,(w,v))))),((u,t),(s,(r,(q,(p,(o,n)))))));'],
[26, True, '(((o,(n,(m,(l,k)))),(j,i)),((h,g),(z,y)),((x,(w,(v,(u,(t,s))))),(r,(q,p))));', '((((t,(s,(r,(q,(p,(o,n)))))),(m,(l,k))),((j,i),(h,g))),(z,(y,x)),(w,(v,u)));'],
[22, False, '((((p,o),((n,m),((l,k),(j,i)))),((h,g),(z,y))),((x,(w,(v,u))),((t,s),(r,q))));', '((((v,(u,(t,s))),(r,q)),((p,o),((n,m),(l,k)))),(((j,i),(h,g)),(z,(y,(x,w)))));'],
[28, False, '((((r,(q,(p,(o,n)))),(m,(l,k))),(((j,i),(h,g)),((z,y),(x,w)))),((v,u),(t,s)));', '((((k,j),((i,(h,g)),(z,y))),(x,w)),(((v,(u,t)),(s,r)),((q,p),((o,n),(m,l)))));'],
[20, True, '((((q,(p,o)),(n,m)),((l,k),((j,i),(h,g)))),(z,(y,x)),((w,v),(u,(t,(s,r)))));', '((((l,(k,(j,i))),(h,g)),((z,y),(x,(w,v)))),(u,t),((s,(r,(q,(p,o)))),(n,m)));'],
[28, False, '(((t,(s,r)),(q,(p,o))),(((n,(m,(l,k))),(j,(i,(h,g)))),((z,y),(x,(w,(v,u))))));', '(((w,(v,u)),(t,s)),(((r,(q,p)),(o,n)),(((m,l),((k,j),((i,(h,g)),z))),(y,x))));'],
[24, True, '((((h,g),(z,y)),((x,(w,(v,u))),(t,(s,(r,q))))),(p,o),((n,m),((l,k),(j,i))));', '(((t,s),((r,(q,p)),((o,(n,(m,l))),((k,j),(i,(h,g)))))),(z,y),(x,(w,(v,u))));'],
[20, True, '(((p,o),(n,(m,(l,(k,(j,i)))))),((h,g),z),((y,(x,w)),((v,u),(t,(s,(r,q))))));', '(((y,(x,w)),(v,(u,t))),((s,r),(q,p)),((o,(n,m)),((l,(k,(j,i))),((h,g),z))));'],
[32, True, '((((s,(r,q)),((p,(o,n)),(m,(l,k)))),((j,(i,(h,g))),(z,y))),(x,w),(v,(u,t)));', '(((u,(t,(s,r))),((q,(p,o)),((n,(m,l)),(k,(j,i))))),((h,g),(z,(y,x))),(w,v));'],
[26, True, '(((z,(y,x)),(w,(v,(u,t)))),(s,(r,(q,(p,(o,n))))),((m,l),(k,(j,(i,(h,g))))));', '(((u,t),((s,r),((q,p),((o,n),((m,(l,k)),((j,i),((h,g),z))))))),(y,x),(w,v));'],
[10, True, '(((p,o),((n,m),((l,(k,(j,i))),((h,g),(z,y))))),(x,(w,(v,u))),((t,s),(r,q)));', '((((n,m),((l,(k,(j,i))),((h,g),(z,y)))),(x,w)),(v,(u,(t,(s,(r,q))))),(p,o));'],
[30, True, '((((h,g),z),((y,x),((w,v),(u,t)))),(s,r),((q,p),((o,n),((m,l),(k,(j,i))))));', '((((v,(u,(t,(s,r)))),(q,(p,o))),((n,m),((l,k),(j,(i,(h,g)))))),(z,y),(x,w));'],
[30, False, '(((q,(p,o)),((n,m),((l,(k,(j,(i,(h,g))))),(z,y)))),((x,(w,v)),(u,(t,(s,r)))));', '((((t,s),((r,q),((p,o),(n,m)))),((l,k),(j,i))),(((h,g),z),((y,(x,w)),(v,u))));'],
[24, False, '(((p,o),(n,m)),(((l,(k,(j,i))),(h,g)),((z,y),((x,w),((v,u),(t,(s,(r,q))))))));', '((x,(w,v)),((u,(t,(s,(r,q)))),((p,(o,(n,(m,(l,(k,(j,(i,(h,g))))))))),(z,y))));'],
[28, False, '(((z,y),((x,w),((v,u),(t,s)))),((r,(q,(p,(o,(n,m))))),((l,k),((j,i),(h,g)))));', '((((s,(r,q)),((p,o),((n,(m,l)),(k,(j,(i,(h,g))))))),(z,y)),((x,w),(v,(u,t))));'],
[24, False, '((((o,n),((m,l),((k,(j,i)),(h,g)))),(z,(y,x))),((w,(v,(u,(t,(s,r))))),(q,p)));', '(((q,(p,(o,(n,m)))),((l,(k,j)),(i,(h,g)))),(z,(y,(x,(w,(v,(u,(t,(s,r)))))))));'],
[22, True, '(((p,(o,(n,m))),((l,k),((j,i),((h,g),(z,y))))),(x,w),((v,u),((t,s),(r,q))));', '(((u,(t,(s,(r,(q,(p,(o,(n,m)))))))),((l,k),((j,i),((h,g),(z,(y,x)))))),w,v);'],
[28, False, '((((r,q),((p,o),(n,(m,l)))),((k,(j,i)),(h,g))),((z,y),((x,(w,v)),(u,(t,s)))));', '(((h,g),z),((y,x),((w,v),((u,t),((s,(r,(q,(p,(o,(n,m)))))),(l,(k,(j,i))))))));'],
[30, True, '((((h,g),z),((y,(x,(w,(v,u)))),((t,s),((r,(q,(p,o))),(n,m))))),(l,k),(j,i));', '((((o,n),((m,(l,(k,j))),((i,(h,g)),z))),(y,(x,(w,v)))),(u,(t,s)),(r,(q,p)));'],
[30, True, '(((v,u),(t,(s,(r,(q,p))))),((o,(n,m)),((l,(k,j)),((i,(h,g)),z))),(y,(x,w)));', '((((m,(l,k)),((j,i),(h,g))),(z,y)),(x,w),((v,(u,(t,(s,(r,q))))),(p,(o,n))));'],
[26, True, '(((q,p),((o,(n,(m,l))),(k,(j,i)))),((h,g),z),((y,x),((w,(v,(u,t))),(s,r))));', '((((j,(i,(h,g))),(z,(y,x))),((w,v),(u,t))),(s,(r,q)),((p,o),(n,(m,(l,k)))));'],
[20, False, '((((o,(n,m)),((l,k),((j,i),((h,g),z)))),(y,x)),(((w,v),(u,t)),((s,r),(q,p))));', '((((j,i),((h,g),z)),((y,x),(w,(v,(u,(t,(s,r))))))),((q,p),((o,n),(m,(l,k)))));'],
[30, False, '(((x,w),(v,(u,(t,(s,(r,(q,(p,(o,(n,m)))))))))),((l,k),((j,(i,(h,g))),(z,y))));', '(((m,l),((k,(j,(i,(h,g)))),z)),((y,(x,(w,(v,(u,t))))),((s,r),((q,p),(o,n)))));'],
[32, True, '((((y,x),(w,v)),((u,(t,(s,r))),(q,(p,o)))),((n,m),(l,(k,j))),((i,(h,g)),z));', '(((m,l),(k,(j,i))),((h,g),z),((y,(x,w)),((v,u),((t,s),(r,(q,(p,(o,n))))))));'],
[28, True, '(((v,u),((t,(s,(r,(q,p)))),((o,n),((m,l),(k,(j,(i,(h,g)))))))),(z,y),(x,w));', '((((n,m),((l,k),((j,i),((h,g),(z,(y,(x,(w,(v,u))))))))),(t,s)),(r,q),(p,o));'],
[32, False, '(((r,(q,p)),(o,n)),(((m,(l,k)),(j,i)),(((h,g),(z,y)),((x,w),((v,u),(t,s))))));', '(((y,x),((w,v),(u,(t,(s,r))))),(((q,(p,(o,n))),(m,l)),((k,(j,(i,(h,g)))),z)));'],
[20, True, '(((w,v),((u,(t,(s,r))),((q,p),((o,(n,(m,l))),((k,j),((i,(h,g)),z)))))),y,x);', '(((w,v),((u,t),(s,(r,q)))),((p,o),((n,(m,l)),(k,j))),((i,(h,g)),(z,(y,x))));'],
[24, False, '(((x,(w,v)),((u,(t,s)),(r,q))),(((p,o),((n,(m,l)),(k,j))),((i,(h,g)),(z,y))));', '((((i,(h,g)),z),((y,x),(w,v))),((u,(t,s)),((r,(q,(p,(o,(n,m))))),(l,(k,j)))));'],
[22, False, '((((k,(j,(i,(h,g)))),(z,(y,x))),((w,v),(u,t))),((s,(r,(q,(p,o)))),(n,(m,l))));', '(((w,v),(u,(t,(s,(r,(q,(p,o))))))),(((n,m),((l,(k,(j,i))),((h,g),z))),(y,x)));'],
[28, True, '(((x,w),((v,u),((t,s),(r,(q,p))))),((o,n),(m,l)),((k,(j,i)),((h,g),(z,y))));', '((((p,o),(n,m)),((l,(k,(j,i))),((h,g),z))),(y,(x,(w,v))),((u,t),(s,(r,q))));'],
[30, False, '(((q,p),((o,(n,(m,l))),((k,(j,(i,(h,g)))),z))),((y,x),((w,(v,u)),(t,(s,r)))));', '((((m,(l,k)),((j,(i,(h,g))),z)),(y,(x,w))),((v,(u,(t,(s,(r,q))))),(p,(o,n))));'],
[30, False, '(((y,x),((w,(v,(u,(t,(s,r))))),(q,p))),((o,(n,(m,(l,(k,(j,i)))))),((h,g),z)));', '((((t,(s,(r,q))),((p,(o,(n,(m,l)))),((k,(j,i)),(h,g)))),(z,y)),((x,w),(v,u)));'],
[20, False, '(((u,(t,s)),(r,(q,(p,(o,(n,(m,(l,(k,j))))))))),(((i,(h,g)),z),(y,(x,(w,v)))));', '(((o,n),(m,(l,(k,j)))),(((i,(h,g)),(z,y)),((x,(w,v)),((u,(t,(s,r))),(q,p)))));'],
[26, False, '(((t,s),((r,(q,(p,(o,n)))),(m,(l,k)))),(((j,i),((h,g),z)),((y,(x,w)),(v,u))));', '(((r,(q,(p,o))),((n,(m,(l,k))),((j,i),(h,g)))),((z,(y,(x,(w,v)))),(u,(t,s))));'],
[28, True, '((((r,q),((p,(o,(n,(m,l)))),((k,(j,i)),(h,g)))),(z,(y,(x,w)))),(v,u),(t,s));', '(((x,(w,(v,(u,(t,s))))),(r,(q,(p,o)))),(n,m),((l,k),((j,(i,(h,g))),(z,y))));'],
[28, False, '(((t,s),((r,(q,p)),((o,n),(m,(l,(k,(j,i))))))),(((h,g),(z,y)),(x,(w,(v,u)))));', '((((h,g),(z,(y,(x,(w,v))))),(u,(t,(s,r)))),((q,(p,(o,(n,m)))),(l,(k,(j,i)))));'],
[26, True, '((((q,(p,o)),((n,m),((l,(k,(j,i))),(h,g)))),(z,(y,x))),(w,v),(u,(t,(s,r))));', '(((y,x),(w,(v,u))),((t,(s,r)),((q,p),(o,n))),((m,(l,k)),((j,(i,(h,g))),z)));'],
[28, False, '((((q,(p,(o,n))),((m,(l,k)),((j,(i,(h,g))),z))),(y,x)),((w,(v,(u,t))),(s,r)));', '(((z,(y,x)),(w,v)),(((u,t),((s,(r,(q,p))),((o,n),(m,l)))),((k,(j,i)),(h,g))));'],
[22, True, '(((x,w),((v,(u,(t,s))),(r,q))),((p,(o,n)),((m,(l,k)),(j,(i,(h,g))))),(z,y));', '((((j,(i,(h,g))),(z,(y,x))),(w,(v,u))),((t,s),((r,q),(p,o))),((n,m),(l,k)));'],
[26, False, '((((n,(m,l)),(k,j)),(((i,(h,g)),(z,y)),((x,w),((v,u),(t,s))))),((r,q),(p,o)));', '(((v,u),(t,s)),(((r,(q,(p,(o,n)))),((m,(l,k)),(j,i))),((h,g),(z,(y,(x,w))))));'],
[32, False, '((((n,(m,(l,(k,j)))),((i,(h,g)),z)),(y,x)),((w,v),((u,(t,(s,r))),(q,(p,o)))));', '((((v,u),(t,(s,(r,(q,p))))),((o,(n,(m,(l,k)))),(j,(i,(h,g))))),((z,y),(x,w)));'],
[20, False, '((((q,(p,(o,n))),(m,l)),((k,(j,(i,(h,g)))),z)),((y,(x,(w,(v,(u,t))))),(s,r)));', '(((w,(v,(u,t))),(s,r)),(((q,p),(o,n)),(((m,l),(k,(j,i))),((h,g),(z,(y,x))))));'],
[20, True, '(((z,(y,(x,w))),(v,u)),((t,(s,r)),(q,(p,o))),((n,(m,l)),((k,(j,i)),(h,g))));', '((((q,(p,(o,n))),(m,l)),((k,j),(i,(h,g)))),(z,y),((x,w),((v,u),(t,(s,r)))));'],
[34, False, '(((w,(v,(u,(t,(s,(r,q)))))),(p,o)),(((n,m),(l,(k,j))),((i,(h,g)),(z,(y,x)))));', '(((y,(x,(w,(v,u)))),(t,(s,r))),(((q,(p,(o,(n,(m,(l,k)))))),(j,i)),((h,g),z)));'],
[26, False, '(((y,x),(w,(v,(u,t)))),(((s,r),((q,(p,o)),(n,(m,l)))),((k,(j,(i,(h,g)))),z)));', '(((s,(r,(q,(p,o)))),(n,m)),(((l,k),((j,i),((h,g),(z,(y,(x,w)))))),(v,(u,t))));'],
[30, False, '(((v,(u,t)),((s,r),((q,p),((o,(n,(m,(l,k)))),(j,i))))),(((h,g),z),(y,(x,w))));', '(((y,(x,(w,v))),((u,(t,s)),(r,(q,(p,o))))),((n,(m,l)),((k,(j,i)),((h,g),z))));'],
[26, False, '(((y,x),(w,v)),(((u,t),((s,(r,(q,p))),(o,n))),((m,(l,k)),((j,i),((h,g),z)))));', '((((s,(r,q)),((p,(o,n)),((m,l),(k,(j,i))))),((h,g),z)),((y,(x,w)),(v,(u,t))));'],
[22, True, '(((w,v),(u,t)),((s,r),((q,p),((o,(n,m)),((l,k),((j,i),(h,g)))))),(z,(y,x)));', '(((z,y),(x,(w,(v,u)))),(t,(s,r)),((q,(p,o)),((n,m),((l,(k,(j,i))),(h,g)))));'],
[28, False, '(((y,x),(w,(v,(u,t)))),(((s,(r,q)),((p,o),(n,(m,(l,k))))),((j,i),((h,g),z))));', '((((i,(h,g)),(z,(y,x))),((w,(v,u)),(t,s))),((r,q),((p,o),((n,m),(l,(k,j))))));'],
[26, False, '(((v,(u,(t,s))),(r,(q,p))),(((o,n),((m,(l,(k,j))),((i,(h,g)),(z,y)))),(x,w)));', '(((q,p),((o,n),((m,l),((k,j),((i,(h,g)),z))))),(y,(x,(w,(v,(u,(t,(s,r))))))));'],
[26, True, '(((t,(s,(r,q))),((p,o),((n,(m,l)),((k,j),((i,(h,g)),z))))),(y,x),(w,(v,u)));', '(((z,y),(x,w)),(v,u),((t,(s,r)),((q,(p,(o,(n,(m,l))))),((k,(j,i)),(h,g)))));'],
[30, True, '(((w,(v,(u,(t,(s,r))))),(q,p)),((o,(n,m)),((l,k),(j,i))),(((h,g),z),(y,x)));', '((((p,o),(n,(m,(l,(k,(j,(i,(h,g)))))))),(z,(y,x))),(w,(v,u)),((t,s),(r,q)));'],
[26, True, '((((i,(h,g)),(z,y)),(x,w)),((v,u),((t,(s,r)),(q,p))),((o,n),(m,(l,(k,j)))));', '(((l,k),((j,i),((h,g),(z,y)))),(x,w),((v,u),((t,s),((r,(q,(p,o))),(n,m)))));'],
[26, False, '(((x,w),((v,(u,(t,s))),((r,(q,p)),((o,(n,(m,(l,k)))),((j,i),(h,g)))))),(z,y));', '(((p,(o,(n,m))),(l,k)),(((j,i),(h,g)),((z,y),((x,(w,v)),((u,t),(s,(r,q)))))));'],
[24, True, '(((x,w),((v,(u,t)),(s,r))),((q,p),(o,(n,(m,(l,k))))),((j,i),((h,g),(z,y))));', '(((h,g),(z,y)),(x,(w,(v,u))),((t,(s,r)),(q,(p,(o,(n,(m,(l,(k,(j,i))))))))));'],
[24, True, '(((y,x),(w,v)),((u,t),((s,r),((q,p),((o,n),(m,(l,k)))))),((j,(i,(h,g))),z));', '((((r,(q,p)),(o,(n,(m,(l,(k,(j,(i,(h,g))))))))),(z,y)),(x,(w,v)),(u,(t,s)));'],
[28, False, '(((y,(x,(w,v))),((u,t),((s,(r,q)),((p,(o,n)),((m,l),(k,(j,i))))))),((h,g),z));', '(((v,u),(t,(s,(r,(q,(p,(o,n))))))),(((m,l),((k,j),((i,(h,g)),z))),(y,(x,w))));'],
[26, True, '((((h,g),z),((y,x),((w,(v,u)),((t,(s,(r,q))),(p,(o,n)))))),(m,(l,k)),(j,i));', '((z,y),(x,(w,(v,(u,t)))),((s,r),((q,p),((o,n),((m,(l,k)),(j,(i,(h,g))))))));'],
[24, True, '(((u,t),(s,r)),((q,p),((o,n),((m,(l,(k,(j,(i,(h,g)))))),z))),(y,(x,(w,v))));', '((((j,(i,(h,g))),z),(y,x)),(w,(v,(u,t))),((s,(r,(q,p))),((o,(n,m)),(l,k))));'],
[30, True, '(((t,(s,r)),((q,p),((o,n),(m,(l,(k,j)))))),((i,(h,g)),z),((y,x),(w,(v,u))));', '((((w,(v,(u,t))),(s,(r,q))),((p,(o,(n,m))),(l,k))),((j,i),(h,g)),(z,(y,x)));'],
[30, False, '((((x,(w,v)),(u,t)),((s,(r,q)),(p,o))),(((n,m),((l,k),((j,i),(h,g)))),(z,y)));', '((r,q),((p,(o,n)),((m,(l,(k,(j,i)))),((h,g),(z,(y,(x,(w,(v,(u,(t,s)))))))))));'],
[28, True, '((((k,j),((i,(h,g)),(z,(y,x)))),(w,v)),(u,t),((s,(r,q)),(p,(o,(n,(m,l))))));', '(((z,y),(x,w)),(v,(u,(t,(s,(r,q))))),((p,o),((n,(m,(l,(k,(j,i))))),(h,g))));'],
[18, True, '(((t,s),((r,(q,(p,o))),(n,m))),((l,(k,j)),((i,(h,g)),(z,y))),((x,w),(v,u)));', '((((l,k),(j,i)),(((h,g),(z,y)),(x,w))),((v,u),(t,s)),((r,q),((p,o),(n,m))));'],
[26, True, '(((h,g),z),(y,(x,w)),((v,(u,(t,s))),((r,(q,p)),((o,(n,(m,l))),(k,(j,i))))));', '(((s,r),(q,p)),((o,n),(m,l)),(((k,j),((i,(h,g)),(z,(y,x)))),(w,(v,(u,t)))));'],
[30, True, '(((x,w),((v,(u,(t,(s,(r,(q,(p,(o,n)))))))),((m,(l,k)),((j,i),(h,g))))),z,y);', '((((h,g),z),(y,x)),((w,v),((u,(t,s)),(r,q))),((p,(o,(n,(m,l)))),(k,(j,i))));'],
[30, False, '(((v,(u,(t,(s,(r,q))))),((p,(o,(n,m))),((l,(k,(j,i))),(h,g)))),((z,y),(x,w)));', '(((v,u),((t,(s,(r,(q,(p,o))))),(n,(m,(l,(k,j)))))),((i,(h,g)),(z,(y,(x,w)))));'],
[22, True, '(((z,y),((x,(w,v)),((u,(t,(s,r))),(q,(p,o))))),(n,m),((l,k),(j,(i,(h,g)))));', '(((r,q),(p,(o,(n,m)))),((l,(k,(j,(i,(h,g))))),(z,y)),((x,w),(v,(u,(t,s)))));'],
[30, True, '(((x,w),((v,(u,(t,(s,r)))),(q,p))),((o,n),(m,l)),((k,j),((i,(h,g)),(z,y))));', '((((p,o),((n,(m,(l,k))),((j,i),(h,g)))),((z,y),(x,(w,v)))),(u,t),(s,(r,q)));'],
[32, False, '(((r,(q,p)),(o,(n,m))),(((l,(k,(j,i))),(h,g)),((z,(y,(x,(w,(v,u))))),(t,s))));', '((((j,(i,(h,g))),(z,y)),(x,(w,(v,(u,t))))),(((s,r),(q,(p,o))),((n,m),(l,k))));'],
[30, False, '((((q,p),((o,(n,(m,(l,k)))),((j,(i,(h,g))),(z,y)))),(x,w)),((v,u),(t,(s,r))));', '((((o,(n,m)),((l,(k,(j,i))),((h,g),z))),(y,x)),((w,v),((u,t),((s,r),(q,p)))));'],
[28, False, '((((s,r),((q,(p,o)),(n,(m,l)))),((k,(j,i)),(h,g))),((z,(y,x)),(w,(v,(u,t)))));', '(((m,l),(k,j)),(((i,(h,g)),z),((y,x),((w,(v,(u,(t,(s,r))))),((q,p),(o,n))))));'],
[20, True, '((((z,y),(x,(w,(v,u)))),((t,s),(r,q))),((p,o),(n,(m,l))),((k,(j,i)),(h,g)));', '(((j,i),(h,g)),(z,(y,x)),((w,(v,u)),((t,(s,(r,q))),((p,o),((n,m),(l,k))))));'],
[20, False, '(((v,u),((t,s),(r,q))),(((p,o),(n,(m,l))),(((k,(j,i)),((h,g),z)),(y,(x,w)))));', '((((s,(r,q)),(p,o)),(((n,(m,l)),(k,(j,i))),((h,g),z))),((y,x),((w,v),(u,t))));'],
[28, True, '((z,y),(x,w),((v,u),((t,(s,(r,q))),((p,(o,(n,m))),(l,(k,(j,(i,(h,g)))))))));', '((((r,q),((p,o),((n,m),((l,k),(j,i))))),((h,g),(z,(y,x)))),(w,v),(u,(t,s)));'],
[24, False, '((((k,(j,(i,(h,g)))),(z,y)),(x,(w,v))),(((u,t),(s,(r,q))),((p,o),(n,(m,l)))));', '(((w,v),(u,(t,s))),(((r,(q,(p,o))),((n,m),(l,(k,(j,(i,(h,g))))))),(z,(y,x))));'],
[24, True, '((((n,m),((l,(k,j)),(i,(h,g)))),(z,y)),(x,(w,v)),((u,(t,(s,(r,q)))),(p,o)));', '(((r,q),(p,o)),((n,(m,l)),((k,j),((i,(h,g)),z))),((y,x),(w,(v,(u,(t,s))))));']]
# test RF exceptions
t1 = Tree('(a,b,(c,d,e));')
t2 = Tree('((a,b),(c,d,e));')
# testing unrooted trees
self.assertRaises(TreeError, t1.robinson_foulds, t2=t2)
# expand polytomies and unrooted trees
self.assertRaises(TreeError, t1.robinson_foulds, t2=t2,
unrooted_trees=True, expand_polytomies=True)
# usisng expand_polytomies and correct_by_size at the same time
self.assertRaises(TreeError, t1.robinson_foulds, t2=t1,
unrooted_trees=True, expand_polytomies=True,
correct_by_polytomy_size=True)
# correct by size when polytomies in both sides
self.assertRaises(TreeError, t1.robinson_foulds, t2=t1,
unrooted_trees=True, correct_by_polytomy_size=True)
# polytomy larger than deafult limit
self.assertRaises(TreeError, t2.robinson_foulds, t2=Tree('(a, (b,c,d,e,f,g,h));'),
expand_polytomies=True)
# duplicated items
t3 = Tree('(a, (b, (c, c)));')
self.assertRaises(TreeError, t3.robinson_foulds, t2=t2)
self.assertRaises(TreeError, t2.robinson_foulds, t2=t3)
# test RF using a knonw set of results
for RF, unrooted, nw1, nw2 in samples:
t1 = Tree(nw1)
t2 = Tree(nw2)
rf, rf_max, names, r1, r2, d1, d2 = t1.robinson_foulds(t2, unrooted_trees=unrooted)
real_max = (20*2) - 4 if not unrooted else (20*2) - 6
self.assertEqual(len(names), 20)
self.assertEqual(rf_max, real_max)
self.assertEqual(rf, RF)
comp = t1.compare(t2, unrooted=unrooted)
self.assertEqual(20, comp['effective_tree_size'])
self.assertEqual(rf_max, comp['max_rf'])
self.assertEqual(RF, comp['rf'])
# Let's insert some random nodes, that should be ignored
for target in random.sample([n for n in t2.get_descendants() if not n.is_leaf()], 5):
target.populate(5)
comp = t1.compare(t2, unrooted=unrooted)
self.assertEqual(20, comp['effective_tree_size'])
self.assertEqual(rf_max, comp['max_rf'])
self.assertEqual(RF, comp['rf'])
# test treeko functionality
t = PhyloTree('((((A,B),C), ((A,B),C)), (((A,B),C), ((A,B),C)));')
ref = Tree('((A,B),C);')
comp = t.compare(ref, has_duplications=True)
#from pprint import pprint
#pprint(comp)
self.assertEqual(comp['effective_tree_size'], 3)
self.assertEqual(comp['treeko_dist'], 0.0)
self.assertEqual(comp['norm_rf'], 0.0)
self.assertEqual(comp['rf'], 0.0)
self.assertEqual(comp['max_rf'], 2)
self.assertEqual(comp['source_subtrees'], 4)
# test polytomy corrections
ref2 = Tree("((a:1, (b:1, c:1, d:1):1):1, (e:1, f:1, g:1):1);")
gtree = Tree("((a:1, (b:1, (c:1, d:1):1):1), (e:1, (f:1, g:1):1):1);")
# Basic polytomy
rf, max_rf, names, r1, r2, d1, d2 = gtree.robinson_foulds(ref2)
self.assertEqual(rf, 2)
rf, max_rf, names, r1, r2, d1, d2 = gtree.robinson_foulds(ref2, expand_polytomies=True)
self.assertEqual(rf, 0)
# nested polytomies
gtree = Tree('((g, h), (a, (b, (c, (d,( e, f))))));')
ref3 = Tree('((a, b, c, (d, e, f)), (g, h));')
ref4 = Tree('((a, b, c, d, e, f), (g, h));')
ref5 = Tree('((a, b, (c, d, (e, f))), (g, h));')
rf, max_rf, names, r1, r2, d1, d2 = gtree.robinson_foulds(ref3)
self.assertEqual(rf, 3)
rf, max_rf, names, r1, r2, d1, d2 = gtree.robinson_foulds(ref3, expand_polytomies=True)
self.assertEqual(rf, 0)
rf, max_rf, names, r1, r2, d1, d2 = gtree.robinson_foulds(ref4)
self.assertEqual(rf, 4)
rf, max_rf, names, r1, r2, d1, d2 = gtree.robinson_foulds(ref4, expand_polytomies=True,
polytomy_size_limit=6)
self.assertEqual(rf, 0)
rf, max_rf, names, r1, r2, d1, d2 = gtree.robinson_foulds(ref5)
self.assertEqual(rf, 2)
rf, max_rf, names, r1, r2, d1, d2 = gtree.robinson_foulds(ref5, expand_polytomies=True)
self.assertEqual(rf, 0)
# two side polytomies
t1 = Tree("((a:1, (b:1, c:1, d:1):1):1, (e:1, f:1, g:1):1);")
t2 = Tree("((a:1, (b:1, c:1, d:1):1), (e:1, (f:1, g:1):1):1);")
rf, max_rf, names, r1, r2, d1, d2 = t1.robinson_foulds(t2, expand_polytomies=True)
self.assertEqual(rf, 0)
# test auto pruned tree topology
for RF, unrooted, nw1, nw2 in samples:
# Add fake tips in the newick
for x in "clanger":
nw1 = nw1.replace(x, "(%s,%s1)" %(x, x) )
nw2 = nw2.replace(x, "(%s,%s2)" %(x, x) )
t1 = Tree(nw1)
t2 = Tree(nw2)
rf, rf_max, names, r1, r2, d1, d2 = t1.robinson_foulds(t2, unrooted_trees=unrooted)
self.assertEqual(len(names), 20)
real_max = (20*2) - 4 if not unrooted else (20*2) - 6
self.assertEqual(rf_max, real_max)
self.assertEqual(rf, RF)
#print 'Testing RF with branch support thresholds...'
# test discarding lowly supported branches
for RF, unrooted, nw1, nw2 in samples:
# Add fake internal nodes with low support
for x in "jlnqr":
nw1 = nw1.replace(x, "(%s,(%s1, %s11)0.6)" %(x, x, x) )
nw2 = nw2.replace(x, "(%s,(%s1, %s11)0.5)" %(x, x, x) )
t1 = Tree(nw1)
t2 = Tree(nw2)
rf, rf_max, names, r1, r2, d1, d2 = t1.robinson_foulds(t2, unrooted_trees=unrooted,
min_support_t1 = 0.1, min_support_t2 = 0.1)
self.assertEqual(len(names), 30)
real_max = (30*2) - 4 if not unrooted else (30*2) - 6
self.assertEqual(rf_max, real_max)
self.assertEqual(rf, RF)
rf, rf_max, names, r1, r2, d1, d2 = t1.robinson_foulds(t2, unrooted_trees=unrooted,
min_support_t1 = 0.0, min_support_t2 = 0.51)
self.assertEqual(len(names), 30)
real_max = (30*2) - 4 - 5 if not unrooted else (30*2) - 6 -5 # -5 to discount low support branches
self.assertEqual(rf_max, real_max)
self.assertEqual(rf, RF)
rf, rf_max, names, r1, r2, d1, d2 = t1.robinson_foulds(t2, unrooted_trees=unrooted,
min_support_t1 = 0.61, min_support_t2 = 0.0)
self.assertEqual(len(names), 30)
real_max = (30*2) - 4 - 5 if not unrooted else (30*2) - 6 -5 # -5 to discount low support branches
self.assertEqual(rf_max, real_max)
self.assertEqual(rf, RF)
rf, rf_max, names, r1, r2, d1, d2 = t1.robinson_foulds(t2, unrooted_trees=unrooted,
min_support_t1 = 0.61, min_support_t2 = 0.51)
self.assertEqual(len(names), 30)
real_max = (30*2) - 4 - 10 if not unrooted else (30*2) - 6 -10 # -10 to discount low support branches
self.assertEqual(rf_max, real_max)
self.assertEqual(rf, RF)
def test_monophyly(self):
#print 'Testing monophyly checks...'
t = Tree("((((((a, e), i), o),h), u), ((f, g), j));")
is_mono, monotype, extra = t.check_monophyly(values=["a", "e", "i", "o", "u"], target_attr="name")
self.assertEqual(is_mono, False)
self.assertEqual(monotype, "polyphyletic")
is_mono, monotype, extra= t.check_monophyly(values=["a", "e", "i", "o"], target_attr="name")
self.assertEqual(is_mono, True)
self.assertEqual(monotype, "monophyletic")
is_mono, monotype, extra = t.check_monophyly(values=["i", "o"], target_attr="name")
self.assertEqual(is_mono, False)
self.assertEqual(monotype, "paraphyletic")
# Test examples
#print 'Testing monophyly check with unrooted trees'
t = PhyloTree('(aaa1, (aaa3, (aaa4, (bbb1, bbb2))));')
is_mono, montype, extra = t.check_monophyly(values=set(['aaa']), target_attr='species', unrooted=True)
self.assertEqual(is_mono, True)
self.assertEqual(extra, set())
t = PhyloTree('(aaa1, (bbb3, (aaa4, (bbb1, bbb2))));')
is_mono, montype, extra = t.check_monophyly(values=set(['aaa']), target_attr='species', unrooted=True)
self.assertEqual(is_mono, False)
self.assertEqual(extra, set([t&'bbb3']))
t = PhyloTree('(aaa1, (aaa3, (aaa4, (bbb1, bbb2))));')
is_mono, montype, extra = t.check_monophyly(values=set(['bbb']), target_attr='species', unrooted=True)
self.assertEqual(is_mono, True)
self.assertEqual(extra, set())
t = PhyloTree('(aaa1, (aaa3, (aaa4, (bbb1, ccc2))));')
is_mono, montype, extra = t.check_monophyly(values=set(['bbb', 'ccc']), target_attr='species', unrooted=True)
self.assertEqual(is_mono, True)
self.assertEqual(extra, set())
t = PhyloTree('(aaa1, (aaa3, (bbb4, (bbb1, bbb2))));')
is_mono, montype, extra = t.check_monophyly(values=set(['bbb4', 'bbb2']), target_attr='name', unrooted=True)
self.assertEqual(is_mono, False)
self.assertEqual(extra, set([t&'bbb1']))
t = PhyloTree('(aaa1, (aaa3, (bbb4, (bbb1, bbb2))));')
is_mono, montype, extra = t.check_monophyly(values=set(['bbb1', 'bbb2']), target_attr='name', unrooted=True)
self.assertEqual(is_mono, True)
self.assertEqual(extra, set())
t = PhyloTree('(aaa1, aaa3, (aaa4, (bbb1, bbb2)));')
is_mono, montype, extra = t.check_monophyly(values=set(['aaa']), target_attr='species', unrooted=True)
self.assertEqual(is_mono, True)
self.assertEqual(extra, set())
t = PhyloTree('(aaa1, bbb3, (aaa4, (bbb1, bbb2)));')
is_mono, montype, extra = t.check_monophyly(values=set(['aaa']), target_attr='species', unrooted=True)
self.assertEqual(is_mono, False)
self.assertEqual(extra, set([t&'bbb3']))
#print 'Check monophyly randomization test'
t = PhyloTree()
t.populate(100)
ancestor = t.get_common_ancestor(['aaaaaaaaaa', 'aaaaaaaaab', 'aaaaaaaaac'])
all_nodes = t.get_descendants()
# I test every possible node as root for the tree. The content of ancestor
# should allways be detected as monophyletic
results = set()
for x in all_nodes:
mono, part, extra = t.check_monophyly(values=set(ancestor.get_leaf_names()), target_attr='name', unrooted=True)
results.add(mono)
t.set_outgroup(x)
self.assertEqual(list(results), [True])
#print 'Testing get_monophyly'
t = Tree("((((((4, e), i)M1, o),h), u), ((3, 4), (i, june))M2);", format=1)
# we annotate the tree using external data
colors = {"a":"red", "e":"green", "i":"yellow",
"o":"black", "u":"purple", "4":"green",
"3":"yellow", "1":"white", "5":"red",
"june":"yellow"}
for leaf in t:
leaf.add_features(color=colors.get(leaf.name, "none"))
green_yellow_nodes = set([t&"M1", t&"M2"])
mono_nodes = t.get_monophyletic(values=["green", "yellow"], target_attr="color")
self.assertEqual(set(mono_nodes), green_yellow_nodes)
def test_copy(self):
t = Tree("((A, B)Internal_1:0.7, (C, D)Internal_2:0.5)root:1.3;", format=1)
# we add a custom annotation to the node named A
(t & "A").add_features(label="custom Value")
# we add a complex feature to the A node, consisting of a list of lists
(t & "A").add_features(complex=[[0,1], [2,3], [1,11], [1,0]])
t_nw = t.copy("newick")
t_nwx = t.copy("newick-extended")
t_pkl = t.copy("cpickle")
(t & "A").testfn = lambda: "YES"
t_deep = t.copy("deepcopy")
self.assertEqual((t_nw & "root").name, "root")
self.assertEqual((t_nwx & "A").label, "custom Value")
self.assertEqual((t_pkl & "A").complex[0], [0,1])
self.assertEqual((t_deep & "A").testfn(), "YES")
def test_cophenetic_matrix(self):
t = Tree(nw_full)
dists, leaves = t.cophenetic_matrix()
actualdists = [
[0, 2.3662779999999994, 2.350554999999999, 2.7002369999999996, 3.527812, 3.305472, 2.424086, 2.424086,
2.432288, 2.483421, 2.3355079999999995, 2.3355079999999995, 2.389350999999999, 2.3812519999999995,
2.404005999999999, 2.3945459999999996, 2.4035289999999994, 2.3689599999999995, 2.4048339999999997,
2.6487609999999995],
[2.3662779999999994, 0, 0.079009, 1.122461, 2.38897, 2.16663, 0.47755000000000003, 0.47755000000000003,
0.4857520000000001, 0.5368850000000001, 0.320202, 0.32020200000000004, 0.133729, 0.12563,
0.14838400000000002, 0.230406, 0.168047, 0.113338, 0.16935199999999997, 0.633455],
[2.350554999999999, 0.079009, 0, 1.106738, 2.373247, 2.150907, 0.461827, 0.461827, 0.47002900000000003,
0.521162, 0.304479, 0.30447900000000006, 0.11800599999999999, 0.10990699999999998, 0.132661, 0.214683,
0.152324, 0.09761499999999998, 0.153629, 0.617732],
[2.7002369999999996, 1.122461, 1.106738, 0, 2.7229289999999997, 2.5005889999999997, 1.180269, 1.180269,
1.188471, 1.239604, 1.091691, 1.091691, 1.145534, 1.137435, 1.160189, 1.1507290000000001, 1.159712,
1.125143, 1.161017, 1.404944],
[3.527812, 2.38897, 2.373247, 2.7229289999999997, 0, 2.6926, 2.446778, 2.446778, 2.45498, 2.506113,
2.3581999999999996, 2.3581999999999996, 2.412043, 2.403944, 2.426698, 2.4172379999999998,
2.4262209999999995, 2.391652, 2.427526, 2.6714529999999996],
[3.305472, 2.16663, 2.150907, 2.5005889999999997, 2.6926, 0, 2.224438, 2.224438, 2.23264, 2.283773, 2.13586,
2.13586, 2.189703, 2.181604, 2.204358, 2.194898, 2.2038809999999995, 2.169312, 2.205186, 2.449113],
[2.424086, 0.47755000000000003, 0.461827, 1.180269, 2.446778, 2.224438, 0, 0.0, 0.01366,
0.30963300000000005, 0.44678, 0.44677999999999995, 0.5006229999999999, 0.49252399999999996, 0.515278,
0.505818, 0.5148010000000001, 0.480232, 0.5161060000000001, 0.7600329999999998],
[2.424086, 0.47755000000000003, 0.461827, 1.180269, 2.446778, 2.224438, 0.0, 0, 0.01366,
0.30963300000000005, 0.44678, 0.44677999999999995, 0.5006229999999999, 0.49252399999999996, 0.515278,
0.505818, 0.5148010000000001, 0.480232, 0.5161060000000001, 0.7600329999999998],
[2.432288, 0.4857520000000001, 0.47002900000000003, 1.188471, 2.45498, 2.23264, 0.01366, 0.01366, 0,
0.317835, 0.45498200000000005, 0.454982, 0.508825, 0.500726, 0.5234800000000001, 0.51402, 0.523003,
0.48843400000000003, 0.524308, 0.7682349999999999],
[2.483421, 0.5368850000000001, 0.521162, 1.239604, 2.506113, 2.283773, 0.30963300000000005,
0.30963300000000005, 0.317835, 0, 0.506115, 0.506115, 0.559958, 0.551859, 0.574613, 0.565153, 0.574136,
0.539567, 0.5754410000000001, 0.8193679999999999],
[2.3355079999999995, 0.320202, 0.304479, 1.091691, 2.3581999999999996, 2.13586, 0.44678, 0.44678,
0.45498200000000005, 0.506115, 0, 0.0, 0.343275, 0.33517600000000003, 0.35793, 0.34847,
0.35745299999999997, 0.322884, 0.35875799999999997, 0.531709],
[2.3355079999999995, 0.32020200000000004, 0.30447900000000006, 1.091691, 2.3581999999999996, 2.13586,
0.44677999999999995, 0.44677999999999995, 0.454982, 0.506115, 0.0, 0, 0.34327500000000005,
0.33517600000000003, 0.35793, 0.34847, 0.357453, 0.32288400000000006, 0.358758, 0.531709],
[2.389350999999999, 0.133729, 0.11800599999999999, 1.145534, 2.412043, 2.189703, 0.5006229999999999,
0.5006229999999999, 0.508825, 0.559958, 0.343275, 0.34327500000000005, 0, 0.013558999999999998, 0.021967,
0.25347900000000007, 0.19112, 0.031257, 0.192425, 0.656528],
[2.3812519999999995, 0.12563, 0.10990699999999998, 1.137435, 2.403944, 2.181604, 0.49252399999999996,
0.49252399999999996, 0.500726, 0.551859, 0.33517600000000003, 0.33517600000000003, 0.013558999999999998, 0,
0.028214, 0.24538000000000004, 0.183021, 0.023157999999999998, 0.184326, 0.648429],
[2.404005999999999, 0.14838400000000002, 0.132661, 1.160189, 2.426698, 2.204358, 0.515278, 0.515278,
0.5234800000000001, 0.574613, 0.35793, 0.35793, 0.021967, 0.028214, 0, 0.26813400000000004,
0.20577499999999999, 0.045912, 0.20708, 0.6711830000000001],
[2.3945459999999996, 0.230406, 0.214683, 1.1507290000000001, 2.4172379999999998, 2.194898, 0.505818,
0.505818, 0.51402, 0.565153, 0.34847, 0.34847, 0.25347900000000007, 0.24538000000000004,
0.26813400000000004, 0, 0.267657, 0.233088, 0.268962, 0.661723],
[2.4035289999999994, 0.168047, 0.152324, 1.159712, 2.4262209999999995, 2.2038809999999995,
0.5148010000000001, 0.5148010000000001, 0.523003, 0.574136, 0.35745299999999997, 0.357453, 0.19112,
0.183021, 0.20577499999999999, 0.267657, 0, 0.170729, 0.057269, 0.670706],
[2.3689599999999995, 0.113338, 0.09761499999999998, 1.125143, 2.391652, 2.169312, 0.480232, 0.480232,
0.48843400000000003, 0.539567, 0.322884, 0.32288400000000006, 0.031257, 0.023157999999999998, 0.045912,
0.233088, 0.170729, 0, 0.17203399999999996, 0.636137],
[2.4048339999999997, 0.16935199999999997, 0.153629, 1.161017, 2.427526, 2.205186, 0.5161060000000001,
0.5161060000000001, 0.524308, 0.5754410000000001, 0.35875799999999997, 0.358758, 0.192425, 0.184326,
0.20708, 0.268962, 0.057269, 0.17203399999999996, 0, 0.672011],
[2.6487609999999995, 0.633455, 0.617732, 1.404944, 2.6714529999999996, 2.449113, 0.7600329999999998,
0.7600329999999998, 0.7682349999999999, 0.8193679999999999, 0.531709, 0.531709, 0.656528, 0.648429,
0.6711830000000001, 0.661723, 0.670706, 0.636137, 0.672011, 0]
]
actualleaves = ['Aga0007658', 'Bta0018700', 'Cfa0016700', 'Cin0011239', 'Ddi0002240', 'Dme0014628',
'Dre0008390', 'Dre0008391', 'Dre0008392', 'Fru0004507', 'Gga0000981', 'Gga0000982',
'Hsa0000001', 'Hsa0010711', 'Hsa0010730', 'Mdo0014718', 'Mms0024821', 'Ptr0000001',
'Rno0030248', 'Xtr0044988']
for i in range(len(actualdists)):
for j in range(len(actualdists[i])):
self.assertAlmostEqual(actualdists[i][j], dists[i][j], places=4)
self.assertEqual(actualleaves, leaves)
# def test_traversing_speed(self):
# return
# for x in xrange(10):
# t = Tree()
# t.populate(100000)
# leaves = t.get_leaves()
# sample = random.sample(leaves, 100)
# t1 = time.time()
# a = t.get_common_ancestor_OLD(sample)
# t2 = time.time() - t1
# print "OLD get common", t2
# t1 = time.time()
# b = t.get_common_ancestor(sample)
# t2 = time.time() - t1
# print "NEW get common", t2
# self.assertEqual(a, b)
# t1 = time.time()
# [n for n in t._iter_descendants_postorder_OLD()]
# t2 = time.time() - t1
# print "OLD postorder", t2
# t1 = time.time()
# [n for n in t._iter_descendants_postorder()]
# t2 = time.time() - t1
# print "NEW postorder", t2
if __name__ == '__main__':
unittest.main()
|