File: ete_build.cfg

package info (click to toggle)
python-ete3 3.1.2%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,148 kB
  • sloc: python: 52,375; javascript: 12,959; xml: 4,903; ansic: 69; sql: 65; makefile: 26; sh: 7
file content (531 lines) | stat: -rw-r--r-- 21,605 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
[genetree_meta_workflow]
phylomedb4=metaligner_phylomedb-trimal01-prottest_default-phyml_default,
eggnog41=metaligner_trimmed-trimal01-prottest_default-phyml_default,
ensembl_small = mcoffee_ensembl-none-none-treebest_ensembl,
ensembl_large = mafft_linsi-none-none-treebest_ensembl,

#ensembl=mcoffee_soft-trimal01-prottest_default-phyml_default,
# linsi_fasttree=mafft_linsi-none-none-fasttree_full,
# linsi_phyml=mafft_linsi-trimal01-none-phyml_default,
# linsi_phyml_bootstrap=mafft_linsi-trimal01-none-phyml_default_bootstrap,
# linsi_raxml=mafft_linsi-trimal01-none-raxml_default,
# linsi_raxml_bootstrap=mafft_linsi-trimal01-none-raxml_default_bootstrap,

full_modeltest = clustalo_default-none-pmodeltest_full_slow-phyml_default,
full_modeltest_bootstrap = clustalo_default-none-pmodeltest_full_slow-phyml_default_bootstrap,
full_fast_modeltest = clustalo_default-none-pmodeltest_full_fast-phyml_default,
full_fast_modeltest_bootstrap = clustalo_default-none-pmodeltest_full_fast-phyml_default_bootstrap,
full_ultrafast_modeltest = clustalo_default-none-pmodeltest_full_ultrafast-phyml_default,
full_ultrafast_modeltest_bootstrap = clustalo_default-none-pmodeltest_full_ultrafast-phyml_default_bootstrap,

soft_modeltest = clustalo_default-none-pmodeltest_soft_slow-phyml_default,
soft_modeltest_bootstrap = clustalo_default-none-pmodeltest_soft_slow-phyml_default_bootstrap,
soft_fast_modeltest = clustalo_default-none-pmodeltest_soft_fast-phyml_default,
soft_fast_modeltest_bootstrap = clustalo_default-none-pmodeltest_soft_fast-phyml_default_bootstrap,
soft_ultrafast_modeltest = clustalo_default-none-pmodeltest_soft_ultrafast-phyml_default,
soft_ultrafast_modeltest_bootstrap = clustalo_default-none-pmodeltest_soft_ultrafast-phyml_default_bootstrap,

standard_raxml=clustalo_default-none-none-raxml_default,
standard_raxml_bootstrap=clustalo_default-none-none-raxml_default_bootstrap,
standard_phyml=clustalo_default-none-none-phyml_default,
standard_phyml_bootstrap=clustalo_default-none-none-phyml_default_bootstrap,
standard_fasttree=clustalo_default-none-none-fasttree_full,

standard_trimmed_raxml=clustalo_default-trimal01-none-raxml_default,
standard_trimmed_raxml_bootstrap=clustalo_default-trimal01-none-raxml_default_bootstrap,
standard_trimmed_phyml=clustalo_default-trimal01-none-phyml_default,
standard_trimmed_phyml_bootstrap=clustalo_default-trimal01-none-phyml_default_bootstrap,
standard_trimmed_fasttree=clustalo_default-trimal01-none-fasttree_full,

c_iqtree_bestmodel = clustalo_default-none-none-iqtree_bestmodel,
c_iqtree_codon_bestmodel = clustalo_default-none-none-iqtree_codon_bestmodel,
c_iqtree_codon = clustalo_default-none-none-iqtree_codon_default,

[workflow_desc]
phylomedb4=     "Worflow described in Huerta-Cepas, et al (Nucleic Acid Research, 2013) and used in http://PhylomeDB.org"

eggnog41 =      "Workflow used in the EggNOG orthology database and based on the phylomedb4 workflow"
ensembl_small = "Experimental (do not use yet)"
ensembl_large = "Experimental (do not use yet)"

full_modeltest =                     "Complete (and slow) pipeline testing all evolutionary models and inferring tree with Phyml"
full_modeltest_bootstrap =           "Complete (and slow) pipeline testing all evolutionary models and inferring tree with Phyml and 100 bootstraps"
full_fast_modeltest =                "Test all evolutionary models using NJ inference and computes final tree with Phyml"
full_fast_modeltest_bootstrap =      "Test all evolutionary models using NJ inference and computes final tree with Phyml and 100 bootstraps"
full_ultrafast_modeltest =           "Test all evolutionary models using NJ inference with no F, I and G estimation and computes final tree with Phyml"
full_ultrafast_modeltest_bootstrap = "Test all evolutionary models using NJ inference with no F, I and G estimation and computes final tree with Phyml and 100 bootstraps"

soft_modeltest =                      "Complete (and slow) pipeline testing 5 protein evolutionary models and inferring tree with Phyml"
soft_modeltest_bootstrap =            "Complete (and slow) pipeline testing 5 protein evolutionary models and inferring tree with Phyml and 100 bootstraps"
soft_fast_modeltest =                 "Test 5 protein evolutionary models using NJ inference and computes final tree with Phyml"
soft_fast_modeltest_bootstrap =       "Test 5 protein evolutionary models using NJ inference and computes final tree with Phyml and 100 bootstraps"
soft_ultrafast_modeltest =            "Test 5 protein evolutionary models using NJ inference with no F, I and G estimation and computes final tree with Phyml"
soft_ultrafast_modeltest_bootstrap =  "Test 5 protein evolutionary models using NJ inference with no F, I and G estimation and computes final tree with Phyml and 100 bootstraps"

standard_raxml=            "Computes a tree using (default) ClustalOmega and RAxML execution (SH-like aLRT supports)"
standard_raxml_bootstrap=  "Computes a tree using (default) ClustalOmega and RAxML with 100 bootstraps"
standard_phyml=            "Computes a tree using (default) ClustalOmega and Phyml (SH-like aLRT supports)"
standard_phyml_bootstrap=  "Computes a tree using (default) ClustalOmega and Phyml and 100 bootstraps"
standard_fasttree=         "Computes a tree using (default) ClustalOmega and FastTree (SH-like aLRT supports)"

standard_trimmed_raxml=             "Computes a tree using (default) ClustalOmega as aligner, trimAl for alg. cleaning and RAxML (SH-like aLRT supports)"
standard_trimmed_raxml_bootstrap=   "Computes a tree using (deafult) ClustalOmega trimAl (-gt01) and RAxML with 100 bootstraps"
standard_trimmed_phyml=             "Computes a tree using (deafult) ClustalOmega trimAl (-gt01) and Phyml (SH-like aLRT supports)"
standard_trimmed_phyml_bootstrap=   "Computes a tree using (deafult) ClustalOmega trimAl (-gt01) and Phyml and 100 bootstraps"
standard_trimmed_fasttree=          "Computes a tree using (deafult) ClustalOmega trimAl (-gt01) and FastTree (SH-like aLRT supports)"

sptree_fasttree_100=   "Selects COGs present in all target species, make a concatenated alignment and build a tree with FastTree"
sptree_fasttree_95=    "Selects COGs present in at least 95% of the target species, make a concatenated alignment and build a tree with FastTree"
sptree_fasttree_90=    "Selects COGs present in at least 90% of the target species, make a concatenated alignment and build a tree with FastTree"
sptree_fasttree_85=    "Selects COGs present in at least 85% of the target species, make a concatenated alignment and build a tree with FastTree"
sptree_fasttree_all=   "Selects all COGS regardless of how many species are represented, make a concatenated alignment and build a tree with FastTree"

sptree_raxml_100=      "Selects COGs present in all target species, make a concatenated alignment and build a tree with RAxML"
sptree_raxml_95=       "Selects COGs present in at least 95% of the target species, make a concatenated alignment and build a tree with RAxML"
sptree_raxml_90=       "Selects COGs present in at least 90% of the target species, make a concatenated alignment and build a tree with RAxML"
sptree_raxml_85=       "Selects COGs present in at least 85% of the target species, make a concatenated alignment and build a tree with RAxML"
sptree_raxml_all=      "Selects all COGS regardless of how many species are represented, make a concatenated alignment and build a tree with RAxML"





[supermatrix_meta_workflow]
sptree_fasttree_100=cog_100-alg_concat_default-fasttree_full,
sptree_fasttree_95=cog_95-alg_concat_default-fasttree_full,
sptree_fasttree_90=cog_90-alg_concat_default-fasttree_full,
sptree_fasttree_85=cog_85-alg_concat_default-fasttree_full,
sptree_fasttree_all=cog_all-alg_concat_default-fasttree_full,

sptree_raxml_100=cog_100-alg_concat_default-raxml_default,
sptree_raxml_95=cog_95-alg_concat_default-raxml_default,
sptree_raxml_90=cog_90-alg_concat_default-raxml_default,
sptree_raxml_85=cog_85-alg_concat_default-raxml_default,
sptree_raxml_all=cog_all-alg_concat_default-raxml_default,

sptree_iqtreeC10_all=cog_all-alg_concat_default-iqtree_C10,
sptree_iqtree_all=cog_all-alg_concat_default-iqtree_default,


[builtin_apps]
## Portable applications are used by default
#app_name             path    , max_cpu
muscle              = built-in, 1
mafft               = built-in, 2
clustalo            = built-in, 1
trimal              = built-in, 1
readal              = built-in, 1
tcoffee             = built-in, 1
phyml               = built-in, 1
raxml-pthreads      = built-in, 48
raxml               = built-in, 1
dialigntx           = built-in, 1
fasttree            = built-in, 2
statal              = built-in, 1
pmodeltest          = built-in, 48
prank               = built-in, 1
probcons            = built-in, 1
kalign              = built-in, 1
iqtree              = built-in, 48

# #################
# APPS
# ################
[metaligner_phylomedb]
_desc = 'Meta-aligning based on head/tail alignments produced by muscle, mafft and dialign-tx, scanned with M-Coffee. Unconsistent columns are removed and final alignment is cleaned with trimAl'
_app = metaligner
_alg_trimming = True
_aligners = @muscle_default, @mafft_default, @clustalo_default, @dialigntx_default

[metaligner_trimmed]
_desc = 'Meta-aligning based on head/tail alignments produced by muscle, mafft and clustalomega, scanned with M-Coffee. Unconsistent columns are removed and final alignment is cleaned with trimAl'
_app = metaligner
_alg_trimming = True
_aligners = @muscle_default, @mafft_default, @clustalo_default

[metaligner_default]
_desc = 'Meta-aligning based on head/tail alignments produced by muscle, mafft and clustalomega, scanned with M-Coffee. Unconsistent columns are removed'
_app = metaligner
_alg_trimming = False
_aligners = @muscle_default, @mafft_default, @clustalo_default

[tcoffee_default]
_desc = '(EXPERIMENTAL) tcoffee alignment with default paramerters'
_app = tcoffee
-output = "fasta_aln"

[mcoffee_ensembl]
_desc = '(EXPERIMENTAL) mcoffee alignment as used in the Ensembl database'
_app = tcoffee
-method = "mafftgins_msa,muscle_msa,kalign_msa,t_coffee_msa" 
-output = "fasta_aln"
#-mode = mcoffee # choose mode or customize your methods combo

[trimal001]
_desc = 'trimal alignment cleaning removing columns with >1% gaps'
_app = trimal
-gt = 0.01

[trimal01]
_desc = 'trimal alignment cleaning removing columns with >10% gaps'
_app = trimal
-gt = 0.1

[trimal02]
_desc = 'trimal alignment cleaning removing columns with >20% gaps'
_app = trimal
-gt = 0.2

[trimal03]
_desc = 'trimal alignment cleaning removing columns with >30% gaps'
_app = trimal
-gt = 0.3

[trimal05]
_desc = 'trimal alignment cleaning removing columns with >50% gaps'
_app = trimal
-gt = 0.5

[trimal_gappyout]
_desc = 'trimal alignment cleaning using gappyout algorithm'
_app = trimal
-gappyout= ''

[muscle_default]
_desc = 'muscle alignment with default parameters'
_app = muscle

[mafft_default]
_desc = 'mafft alignment with default parameters'
_app = mafft
--auto = ""

[mafft_einsi]
_desc = 'mafft alignment using the E-INS-i mode'
# E-INS-i
#is suitable for alignments like this:
#
#oooooooooXXX------XXXX---------------------------------XXXXXXXXXXX-XXXXXXXXXXXXXXXooooooooooooo
#---------XXXXXXXXXXXXXooo------------------------------XXXXXXXXXXXXXXXXXX-XXXXXXXX-------------
#-----ooooXXXXXX---XXXXooooooooooo----------------------XXXXX----XXXXXXXXXXXXXXXXXXooooooooooooo
#---------XXXXX----XXXXoooooooooooooooooooooooooooooooooXXXXX-XXXXXXXXXXXX--XXXXXXX-------------
#---------XXXXX----XXXX---------------------------------XXXXX---XXXXXXXXXX--XXXXXXXooooo--------
# where 'X's indicate alignable residues, 'o's indicate unalignable residues and
# '-'s indicate gaps. Unalignable residues are left unaligned at the pairwise
# alignment stage, because of the use of the generalized affine gap
# cost. Therefore E-INS-i is applicable to a difficult problem such as RNA
# polymerase, which has several conserved motifs embedded in long unalignable
# regions. As E-INS-i has the minimum assumption of the three methods, this is
# recommended if the nature of sequences to be aligned is not clear. Note that
# E-INS-i assumes that the arrangement of the conserved motifs is shared by all
# sequences.
_app = mafft
--genafpair = ''
--maxiterate=1000

[mafft_linsi]
_desc = 'mafft alignment using the L-INS-i mode'
# L-INS-i
#is suitable to:
#ooooooooooooooooooooooooooooooooXXXXXXXXXXX-XXXXXXXXXXXXXXX------------------
#--------------------------------XX-XXXXXXXXXXXXXXX-XXXXXXXXooooooooooo-------
#------------------ooooooooooooooXXXXX----XXXXXXXX---XXXXXXXooooooooooo-------
#--------ooooooooooooooooooooooooXXXXX-XXXXXXXXXX----XXXXXXXoooooooooooooooooo
#--------------------------------XXXXXXXXXXXXXXXX----XXXXXXX------------------
# L-INS-i can align a set of sequences containing sequences flanking around one
# alignable domain. Flanking sequences are ignored in the pairwise alignment by
# the Smith-Waterman algorithm. Note that the input sequences are assumed to
# have only one alignable domain. In benchmark tests, the ref4 of BAliBASE
# corresponds to this. The other categories of BAliBASE also correspond to
# similar situations, because they have flanking sequences. L-INS-i also shows
# higher accuracy values for a part of SABmark and HOMSTRAD than G-INS-i, but we
# have not identified the reason for this.
_app = mafft
--localpair = ''
--maxiterate = 1000

[mafft_ginsi]
_desc = 'mafft alignment using the G-INS-i mode'
#G-INS-i
#is suitable to:
# XXXXXXXXXXX-XXXXXXXXXXXXXXX
# XX-XXXXXXXXXXXXXXX-XXXXXXXX
# XXXXX----XXXXXXXX---XXXXXXX
# XXXXX-XXXXXXXXXX----XXXXXXX
# XXXXXXXXXXXXXXXX----XXXXXXX
# G-INS-i assumes that entire region can be aligned and tries to align them
#globally using the Needleman-Wunsch algorithm; that is, a set of sequences of
#one domain must be extracted by truncating flanking sequences. In benchmark
#tests, SABmark and HOMSTRAD correspond to this.
_app = mafft
--globalpair = ''
--maxiterate = 1000

[clustalo_default]
_desc = 'clustalo with default parameters'
_app = clustalo

[dialigntx_default]
_desc = 'dialign-tx with default parameters'
_app = dialigntx

[prottest_default]
_desc = 'Uses BioNJ trees to select best protein model from: JTT, WAG, VT, LG and MtREV. Fixed parameters: +G+I+F'
_app = prottest
_lk_mode = "phyml" # let "phyml" or "raxml" to optimize likelihood
_models = "JTT", "WAG", "VT", "LG", "MtREV"
-f = m            # char freq (m)odel or (e)stimated
--pinv = e        # Proportion of invariant sites
--alpha = e       #
--nclasses =  4   # Number of classes
--no_memory_check = ""
--quiet = ""


[pmodeltest_full_ultrafast]
_app = pmodeltest
_desc = 'Test all models using NJ tree inference and skipping gamma, invariant sites, and frequency site estimations (!G!I!F)'
_aa_models = "all"
_nt_models = "all"
--fast = ""
--noinv = ""
--nogam = ""
--nofrq = ""

[pmodeltest_full_fast]
_app = pmodeltest
_desc = 'Test all models using NJ tree inference'
_aa_models = "all"
_nt_models = "all"
--fast = ""

[pmodeltest_full_slow]
_app = pmodeltest
_desc = 'Test all models using ML tree inference'
_aa_models = "all"
_nt_models = "all"


[pmodeltest_soft_ultrafast]
_desc = 'Test JTT,WAG,VT,LG,MtREV models using NJ tree inference and skipping gamma, invariant sites, and frequency site estimation (!G!I!F)'
_app = pmodeltest
_aa_models = "JTT,WAG,VT,LG,MtREV"
_nt_models = "GTR"
--fast = ""
--noinv = ""
--nogam = ""
#--nofrq = ""

[pmodeltest_soft_fast]
_desc = 'Test JTT,WAG,VT,LG,MtREV models using NJ tree inference'
_app = pmodeltest
_aa_models = "JTT,WAG,VT,LG,MtREV"
_nt_models = "GTR"
--fast = ""

[pmodeltest_soft_slow]
_desc = 'Test JTT,WAG,VT,LG,MtREV models using ML tree inference'
_app = pmodeltest
_aa_models = "JTT,WAG,VT,LG,MtREV"
_nt_models = "GTR"


[bionj_default]
_desc = 'BioNJ tree inferred with Phyml. default models JTT/GTR'
_app = phyml
_aa_model = JTT # AA model used if no model selection is performed
_nt_model = GTR # Nt model used if no model selection is performed
--pinv = e        # Proportion of invariant sites.  Fixed value in the
                  # [0,1] range or "e" for estimated
--alpha = e       # Gamma distribution shape parameter. fixed value or
                  # "e" for "estimated"
--nclasses =  4   # Number of rate categories
-o = lr          # Tree optimization
-f = m            # e: estiamte character frequencies.  m: character
                  # frequencies from model
--bootstrap = -2  #  approximate likelihood ratio test returning
                  #  Chi2-based parametric branch supports.

[fasttree_default]
_desc = 'Fasttree with default parameters'
_app = fasttree

[fasttree_full]
_inherits = fasttree_default
_desc = 'Fasttree with slow NNI and MLACC=3'
-pseudo = ''
-mlacc = 3
-slownni = ''

[phyml_default]
_desc = 'Phyml tree using +G+I+F, 4 classes and aLRT branch supports. Default models JTT/GTR'
_app = phyml
_aa_model = JTT # AA model used if no model selection is performed
_nt_model = GTR # Nt model used if no model selection is performed
--pinv = e        # Proportion of invariant sites.  Fixed value in the
                  # [0,1] range or "e" for estimated
--alpha = e       # Gamma distribution shape parameter. fixed value or
                  # "e" for "estimated"
--nclasses =  4   # Number of rate categories
-o = tlr          # Tree optimization
-f = m            # e: estiamte character frequencies.  m: character
                  # frequencies from model
--bootstrap = -2  #  approximate likelihood ratio test returning
                  #  Chi2-based parametric branch supports.

[phyml_default_bootstrap]
_inherits = phyml_default
_desc = 'Phyml tree using +G+I+F, 4 classes and 100 bootstraps. Default models JTT/GTR'
--bootstrap = 100 
                  

[raxml_default]
_desc = 'RAxML with default parameters, GAMMA JTT/GTR and aLRT branch supports.'
_app = raxml
_bootstrap = alrt # alrt, alrt_phyml or and integer number
_method = GAMMA # GAMMA or CAT
_aa_model = JTT # Model used if no model selection is performed
# _model_suffix = "I" or "IF"
_model_suffix = ""
-f = d
-p = 31416 # Random seed to generate starting tree. Make results reproducible


[raxml_default_bootstrap]
_inherits = raxml_default
_desc = 'RAxML with default parameters, GAMMA JTT/GTR and 100 boostrap replicates'
_bootstrap = 100

[iqtree_default]
_desc = 'IQTree with default parameters and alrt branch supports'
_app = iqtree
-alrt = 1000
-seed = 31416

[iqtree_bestmodel]
_inherits = iqtree_default
_desc = 'IQTree '
-m = TESTNEWONLY

[iqtree_codon_default] 
_inherits = iqtree_default
_desc = 'IQTree'
-st = CODON

[iqtree_codon_bestmodel]
_inherits = iqtree_default
_desc = 'IQTree'
-st = CODON
-m = TEST

[iqtree_C10]
_inherits = iqtree_default
_desc = 'IQTree C10'
-m = C10

[iqtree_C30]
_inherits = iqtree_default
_desc = 'IQTree C30'
-m = C30

[iqtree_C60]
_inherits = iqtree_default
_desc = 'IQTree C60'
-m = C60


[treebest_ensembl]
_desc = '(EXPERIMENTAL, do not use)'
_app = phyml
_aa_model = JTT # AA model used if no model selection is performed
_nt_model = GTR # Nt model used if no model selection is performed
--no_memory_check = ""
--quiet = ""
--pinv = e        # Proportion of invariant sites.  Fixed value in the
                  # [0,1] range or "e" for estimated
--alpha = e       # Gamma distribution shape parameter. fixed value or
                  # "e" for "estimated"
--nclasses =  4   # Number of rate categories
-o = tlr          # Tree optimization
-f = m            # e: estiamte character frequencies.  m: character
                  # frequencies from model
--bootstrap = -2  #  approximate likelihood ratio test returning
                  #  Chi2-based parametric branch supports.



# #################
# SUPERMATRIX APPS
# ################

#dummy
[sptree_dummy]
_app = supermatrix
_desc = 'Only 4 genes are selected. Just for testing purposes'
_cog_selector         = @cog_dummy
_alg_concatenator     = @alg_concat_default
_aa_tree_builder      = @fasttree_default
_nt_tree_builder      = @fasttree_default
_appset = @builtin_apps

[cog_dummy]
_desc = 'Only 4 genes are selected. Just for testing purposes'
_app = cogselector
_species_missing_factor = 0.50
_max_species_missing_factor = 0.60
_max_cogs = 4

[alg_concat_default]
_app = concatalg
_default_aa_model = JTT
_default_nt_model = GTR

[cog_all]
_app = cogselector
_desc = 'all clusters of orthologous groups (COGs) will be used'
_species_missing_factor = 1.0
_max_species_missing_factor = 1.0
_max_cogs = 999999

[cog_100]
_desc = 'only COGs including 100% of the target species will be used'
_app = cogselector
_species_missing_factor = 0
_max_species_missing_factor = 0
_max_cogs = 999999

[cog_95]
_desc = 'all COGs including at least 95% of the target species will be used'
_app = cogselector
_species_missing_factor = 0.05
_max_species_missing_factor = 0.07
_max_cogs = 999999


[cog_90]
_desc = 'all COGs including at least 90% of the target species will be used'
_app = cogselector
_species_missing_factor = 0.10
_max_species_missing_factor = 0.15
_max_cogs = 999999

[cog_85]
_desc = 'all COGs including at least 85% of the target species will be used'
_app = cogselector
_species_missing_factor = 0.15
_max_species_missing_factor = 0.20
_max_cogs = 999999

# #################
# NPR configs
# ################

[splitter_default]
_desc = 'Select anchoring sequences from sister clade until reaching 10% of the actual partition size.'
_app = treesplitter
_max_outgroup_size = 10%
_min_outgroup_support = 0.90
_outgroup_topology_dist = False
_first_split = midpoint