1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
|
[genetree_meta_workflow]
phylomedb4=metaligner_phylomedb-trimal01-prottest_default-phyml_default,
eggnog41=metaligner_trimmed-trimal01-prottest_default-phyml_default,
ensembl_small = mcoffee_ensembl-none-none-treebest_ensembl,
ensembl_large = mafft_linsi-none-none-treebest_ensembl,
#ensembl=mcoffee_soft-trimal01-prottest_default-phyml_default,
# linsi_fasttree=mafft_linsi-none-none-fasttree_full,
# linsi_phyml=mafft_linsi-trimal01-none-phyml_default,
# linsi_phyml_bootstrap=mafft_linsi-trimal01-none-phyml_default_bootstrap,
# linsi_raxml=mafft_linsi-trimal01-none-raxml_default,
# linsi_raxml_bootstrap=mafft_linsi-trimal01-none-raxml_default_bootstrap,
full_modeltest = clustalo_default-none-pmodeltest_full_slow-phyml_default,
full_modeltest_bootstrap = clustalo_default-none-pmodeltest_full_slow-phyml_default_bootstrap,
full_fast_modeltest = clustalo_default-none-pmodeltest_full_fast-phyml_default,
full_fast_modeltest_bootstrap = clustalo_default-none-pmodeltest_full_fast-phyml_default_bootstrap,
full_ultrafast_modeltest = clustalo_default-none-pmodeltest_full_ultrafast-phyml_default,
full_ultrafast_modeltest_bootstrap = clustalo_default-none-pmodeltest_full_ultrafast-phyml_default_bootstrap,
soft_modeltest = clustalo_default-none-pmodeltest_soft_slow-phyml_default,
soft_modeltest_bootstrap = clustalo_default-none-pmodeltest_soft_slow-phyml_default_bootstrap,
soft_fast_modeltest = clustalo_default-none-pmodeltest_soft_fast-phyml_default,
soft_fast_modeltest_bootstrap = clustalo_default-none-pmodeltest_soft_fast-phyml_default_bootstrap,
soft_ultrafast_modeltest = clustalo_default-none-pmodeltest_soft_ultrafast-phyml_default,
soft_ultrafast_modeltest_bootstrap = clustalo_default-none-pmodeltest_soft_ultrafast-phyml_default_bootstrap,
standard_raxml=clustalo_default-none-none-raxml_default,
standard_raxml_bootstrap=clustalo_default-none-none-raxml_default_bootstrap,
standard_phyml=clustalo_default-none-none-phyml_default,
standard_phyml_bootstrap=clustalo_default-none-none-phyml_default_bootstrap,
standard_fasttree=clustalo_default-none-none-fasttree_full,
standard_trimmed_raxml=clustalo_default-trimal01-none-raxml_default,
standard_trimmed_raxml_bootstrap=clustalo_default-trimal01-none-raxml_default_bootstrap,
standard_trimmed_phyml=clustalo_default-trimal01-none-phyml_default,
standard_trimmed_phyml_bootstrap=clustalo_default-trimal01-none-phyml_default_bootstrap,
standard_trimmed_fasttree=clustalo_default-trimal01-none-fasttree_full,
c_iqtree_bestmodel = clustalo_default-none-none-iqtree_bestmodel,
c_iqtree_codon_bestmodel = clustalo_default-none-none-iqtree_codon_bestmodel,
c_iqtree_codon = clustalo_default-none-none-iqtree_codon_default,
[workflow_desc]
phylomedb4= "Worflow described in Huerta-Cepas, et al (Nucleic Acid Research, 2013) and used in http://PhylomeDB.org"
eggnog41 = "Workflow used in the EggNOG orthology database and based on the phylomedb4 workflow"
ensembl_small = "Experimental (do not use yet)"
ensembl_large = "Experimental (do not use yet)"
full_modeltest = "Complete (and slow) pipeline testing all evolutionary models and inferring tree with Phyml"
full_modeltest_bootstrap = "Complete (and slow) pipeline testing all evolutionary models and inferring tree with Phyml and 100 bootstraps"
full_fast_modeltest = "Test all evolutionary models using NJ inference and computes final tree with Phyml"
full_fast_modeltest_bootstrap = "Test all evolutionary models using NJ inference and computes final tree with Phyml and 100 bootstraps"
full_ultrafast_modeltest = "Test all evolutionary models using NJ inference with no F, I and G estimation and computes final tree with Phyml"
full_ultrafast_modeltest_bootstrap = "Test all evolutionary models using NJ inference with no F, I and G estimation and computes final tree with Phyml and 100 bootstraps"
soft_modeltest = "Complete (and slow) pipeline testing 5 protein evolutionary models and inferring tree with Phyml"
soft_modeltest_bootstrap = "Complete (and slow) pipeline testing 5 protein evolutionary models and inferring tree with Phyml and 100 bootstraps"
soft_fast_modeltest = "Test 5 protein evolutionary models using NJ inference and computes final tree with Phyml"
soft_fast_modeltest_bootstrap = "Test 5 protein evolutionary models using NJ inference and computes final tree with Phyml and 100 bootstraps"
soft_ultrafast_modeltest = "Test 5 protein evolutionary models using NJ inference with no F, I and G estimation and computes final tree with Phyml"
soft_ultrafast_modeltest_bootstrap = "Test 5 protein evolutionary models using NJ inference with no F, I and G estimation and computes final tree with Phyml and 100 bootstraps"
standard_raxml= "Computes a tree using (default) ClustalOmega and RAxML execution (SH-like aLRT supports)"
standard_raxml_bootstrap= "Computes a tree using (default) ClustalOmega and RAxML with 100 bootstraps"
standard_phyml= "Computes a tree using (default) ClustalOmega and Phyml (SH-like aLRT supports)"
standard_phyml_bootstrap= "Computes a tree using (default) ClustalOmega and Phyml and 100 bootstraps"
standard_fasttree= "Computes a tree using (default) ClustalOmega and FastTree (SH-like aLRT supports)"
standard_trimmed_raxml= "Computes a tree using (default) ClustalOmega as aligner, trimAl for alg. cleaning and RAxML (SH-like aLRT supports)"
standard_trimmed_raxml_bootstrap= "Computes a tree using (deafult) ClustalOmega trimAl (-gt01) and RAxML with 100 bootstraps"
standard_trimmed_phyml= "Computes a tree using (deafult) ClustalOmega trimAl (-gt01) and Phyml (SH-like aLRT supports)"
standard_trimmed_phyml_bootstrap= "Computes a tree using (deafult) ClustalOmega trimAl (-gt01) and Phyml and 100 bootstraps"
standard_trimmed_fasttree= "Computes a tree using (deafult) ClustalOmega trimAl (-gt01) and FastTree (SH-like aLRT supports)"
sptree_fasttree_100= "Selects COGs present in all target species, make a concatenated alignment and build a tree with FastTree"
sptree_fasttree_95= "Selects COGs present in at least 95% of the target species, make a concatenated alignment and build a tree with FastTree"
sptree_fasttree_90= "Selects COGs present in at least 90% of the target species, make a concatenated alignment and build a tree with FastTree"
sptree_fasttree_85= "Selects COGs present in at least 85% of the target species, make a concatenated alignment and build a tree with FastTree"
sptree_fasttree_all= "Selects all COGS regardless of how many species are represented, make a concatenated alignment and build a tree with FastTree"
sptree_raxml_100= "Selects COGs present in all target species, make a concatenated alignment and build a tree with RAxML"
sptree_raxml_95= "Selects COGs present in at least 95% of the target species, make a concatenated alignment and build a tree with RAxML"
sptree_raxml_90= "Selects COGs present in at least 90% of the target species, make a concatenated alignment and build a tree with RAxML"
sptree_raxml_85= "Selects COGs present in at least 85% of the target species, make a concatenated alignment and build a tree with RAxML"
sptree_raxml_all= "Selects all COGS regardless of how many species are represented, make a concatenated alignment and build a tree with RAxML"
[supermatrix_meta_workflow]
sptree_fasttree_100=cog_100-alg_concat_default-fasttree_full,
sptree_fasttree_95=cog_95-alg_concat_default-fasttree_full,
sptree_fasttree_90=cog_90-alg_concat_default-fasttree_full,
sptree_fasttree_85=cog_85-alg_concat_default-fasttree_full,
sptree_fasttree_all=cog_all-alg_concat_default-fasttree_full,
sptree_raxml_100=cog_100-alg_concat_default-raxml_default,
sptree_raxml_95=cog_95-alg_concat_default-raxml_default,
sptree_raxml_90=cog_90-alg_concat_default-raxml_default,
sptree_raxml_85=cog_85-alg_concat_default-raxml_default,
sptree_raxml_all=cog_all-alg_concat_default-raxml_default,
sptree_iqtreeC10_all=cog_all-alg_concat_default-iqtree_C10,
sptree_iqtree_all=cog_all-alg_concat_default-iqtree_default,
[builtin_apps]
## Portable applications are used by default
#app_name path , max_cpu
muscle = built-in, 1
mafft = built-in, 2
clustalo = built-in, 1
trimal = built-in, 1
readal = built-in, 1
tcoffee = built-in, 1
phyml = built-in, 1
raxml-pthreads = built-in, 48
raxml = built-in, 1
dialigntx = built-in, 1
fasttree = built-in, 2
statal = built-in, 1
pmodeltest = built-in, 48
prank = built-in, 1
probcons = built-in, 1
kalign = built-in, 1
iqtree = built-in, 48
# #################
# APPS
# ################
[metaligner_phylomedb]
_desc = 'Meta-aligning based on head/tail alignments produced by muscle, mafft and dialign-tx, scanned with M-Coffee. Unconsistent columns are removed and final alignment is cleaned with trimAl'
_app = metaligner
_alg_trimming = True
_aligners = @muscle_default, @mafft_default, @clustalo_default, @dialigntx_default
[metaligner_trimmed]
_desc = 'Meta-aligning based on head/tail alignments produced by muscle, mafft and clustalomega, scanned with M-Coffee. Unconsistent columns are removed and final alignment is cleaned with trimAl'
_app = metaligner
_alg_trimming = True
_aligners = @muscle_default, @mafft_default, @clustalo_default
[metaligner_default]
_desc = 'Meta-aligning based on head/tail alignments produced by muscle, mafft and clustalomega, scanned with M-Coffee. Unconsistent columns are removed'
_app = metaligner
_alg_trimming = False
_aligners = @muscle_default, @mafft_default, @clustalo_default
[tcoffee_default]
_desc = '(EXPERIMENTAL) tcoffee alignment with default paramerters'
_app = tcoffee
-output = "fasta_aln"
[mcoffee_ensembl]
_desc = '(EXPERIMENTAL) mcoffee alignment as used in the Ensembl database'
_app = tcoffee
-method = "mafftgins_msa,muscle_msa,kalign_msa,t_coffee_msa"
-output = "fasta_aln"
#-mode = mcoffee # choose mode or customize your methods combo
[trimal001]
_desc = 'trimal alignment cleaning removing columns with >1% gaps'
_app = trimal
-gt = 0.01
[trimal01]
_desc = 'trimal alignment cleaning removing columns with >10% gaps'
_app = trimal
-gt = 0.1
[trimal02]
_desc = 'trimal alignment cleaning removing columns with >20% gaps'
_app = trimal
-gt = 0.2
[trimal03]
_desc = 'trimal alignment cleaning removing columns with >30% gaps'
_app = trimal
-gt = 0.3
[trimal05]
_desc = 'trimal alignment cleaning removing columns with >50% gaps'
_app = trimal
-gt = 0.5
[trimal_gappyout]
_desc = 'trimal alignment cleaning using gappyout algorithm'
_app = trimal
-gappyout= ''
[muscle_default]
_desc = 'muscle alignment with default parameters'
_app = muscle
[mafft_default]
_desc = 'mafft alignment with default parameters'
_app = mafft
--auto = ""
[mafft_einsi]
_desc = 'mafft alignment using the E-INS-i mode'
# E-INS-i
#is suitable for alignments like this:
#
#oooooooooXXX------XXXX---------------------------------XXXXXXXXXXX-XXXXXXXXXXXXXXXooooooooooooo
#---------XXXXXXXXXXXXXooo------------------------------XXXXXXXXXXXXXXXXXX-XXXXXXXX-------------
#-----ooooXXXXXX---XXXXooooooooooo----------------------XXXXX----XXXXXXXXXXXXXXXXXXooooooooooooo
#---------XXXXX----XXXXoooooooooooooooooooooooooooooooooXXXXX-XXXXXXXXXXXX--XXXXXXX-------------
#---------XXXXX----XXXX---------------------------------XXXXX---XXXXXXXXXX--XXXXXXXooooo--------
# where 'X's indicate alignable residues, 'o's indicate unalignable residues and
# '-'s indicate gaps. Unalignable residues are left unaligned at the pairwise
# alignment stage, because of the use of the generalized affine gap
# cost. Therefore E-INS-i is applicable to a difficult problem such as RNA
# polymerase, which has several conserved motifs embedded in long unalignable
# regions. As E-INS-i has the minimum assumption of the three methods, this is
# recommended if the nature of sequences to be aligned is not clear. Note that
# E-INS-i assumes that the arrangement of the conserved motifs is shared by all
# sequences.
_app = mafft
--genafpair = ''
--maxiterate=1000
[mafft_linsi]
_desc = 'mafft alignment using the L-INS-i mode'
# L-INS-i
#is suitable to:
#ooooooooooooooooooooooooooooooooXXXXXXXXXXX-XXXXXXXXXXXXXXX------------------
#--------------------------------XX-XXXXXXXXXXXXXXX-XXXXXXXXooooooooooo-------
#------------------ooooooooooooooXXXXX----XXXXXXXX---XXXXXXXooooooooooo-------
#--------ooooooooooooooooooooooooXXXXX-XXXXXXXXXX----XXXXXXXoooooooooooooooooo
#--------------------------------XXXXXXXXXXXXXXXX----XXXXXXX------------------
# L-INS-i can align a set of sequences containing sequences flanking around one
# alignable domain. Flanking sequences are ignored in the pairwise alignment by
# the Smith-Waterman algorithm. Note that the input sequences are assumed to
# have only one alignable domain. In benchmark tests, the ref4 of BAliBASE
# corresponds to this. The other categories of BAliBASE also correspond to
# similar situations, because they have flanking sequences. L-INS-i also shows
# higher accuracy values for a part of SABmark and HOMSTRAD than G-INS-i, but we
# have not identified the reason for this.
_app = mafft
--localpair = ''
--maxiterate = 1000
[mafft_ginsi]
_desc = 'mafft alignment using the G-INS-i mode'
#G-INS-i
#is suitable to:
# XXXXXXXXXXX-XXXXXXXXXXXXXXX
# XX-XXXXXXXXXXXXXXX-XXXXXXXX
# XXXXX----XXXXXXXX---XXXXXXX
# XXXXX-XXXXXXXXXX----XXXXXXX
# XXXXXXXXXXXXXXXX----XXXXXXX
# G-INS-i assumes that entire region can be aligned and tries to align them
#globally using the Needleman-Wunsch algorithm; that is, a set of sequences of
#one domain must be extracted by truncating flanking sequences. In benchmark
#tests, SABmark and HOMSTRAD correspond to this.
_app = mafft
--globalpair = ''
--maxiterate = 1000
[clustalo_default]
_desc = 'clustalo with default parameters'
_app = clustalo
[dialigntx_default]
_desc = 'dialign-tx with default parameters'
_app = dialigntx
[prottest_default]
_desc = 'Uses BioNJ trees to select best protein model from: JTT, WAG, VT, LG and MtREV. Fixed parameters: +G+I+F'
_app = prottest
_lk_mode = "phyml" # let "phyml" or "raxml" to optimize likelihood
_models = "JTT", "WAG", "VT", "LG", "MtREV"
-f = m # char freq (m)odel or (e)stimated
--pinv = e # Proportion of invariant sites
--alpha = e #
--nclasses = 4 # Number of classes
--no_memory_check = ""
--quiet = ""
[pmodeltest_full_ultrafast]
_app = pmodeltest
_desc = 'Test all models using NJ tree inference and skipping gamma, invariant sites, and frequency site estimations (!G!I!F)'
_aa_models = "all"
_nt_models = "all"
--fast = ""
--noinv = ""
--nogam = ""
--nofrq = ""
[pmodeltest_full_fast]
_app = pmodeltest
_desc = 'Test all models using NJ tree inference'
_aa_models = "all"
_nt_models = "all"
--fast = ""
[pmodeltest_full_slow]
_app = pmodeltest
_desc = 'Test all models using ML tree inference'
_aa_models = "all"
_nt_models = "all"
[pmodeltest_soft_ultrafast]
_desc = 'Test JTT,WAG,VT,LG,MtREV models using NJ tree inference and skipping gamma, invariant sites, and frequency site estimation (!G!I!F)'
_app = pmodeltest
_aa_models = "JTT,WAG,VT,LG,MtREV"
_nt_models = "GTR"
--fast = ""
--noinv = ""
--nogam = ""
#--nofrq = ""
[pmodeltest_soft_fast]
_desc = 'Test JTT,WAG,VT,LG,MtREV models using NJ tree inference'
_app = pmodeltest
_aa_models = "JTT,WAG,VT,LG,MtREV"
_nt_models = "GTR"
--fast = ""
[pmodeltest_soft_slow]
_desc = 'Test JTT,WAG,VT,LG,MtREV models using ML tree inference'
_app = pmodeltest
_aa_models = "JTT,WAG,VT,LG,MtREV"
_nt_models = "GTR"
[bionj_default]
_desc = 'BioNJ tree inferred with Phyml. default models JTT/GTR'
_app = phyml
_aa_model = JTT # AA model used if no model selection is performed
_nt_model = GTR # Nt model used if no model selection is performed
--pinv = e # Proportion of invariant sites. Fixed value in the
# [0,1] range or "e" for estimated
--alpha = e # Gamma distribution shape parameter. fixed value or
# "e" for "estimated"
--nclasses = 4 # Number of rate categories
-o = lr # Tree optimization
-f = m # e: estiamte character frequencies. m: character
# frequencies from model
--bootstrap = -2 # approximate likelihood ratio test returning
# Chi2-based parametric branch supports.
[fasttree_default]
_desc = 'Fasttree with default parameters'
_app = fasttree
[fasttree_full]
_inherits = fasttree_default
_desc = 'Fasttree with slow NNI and MLACC=3'
-pseudo = ''
-mlacc = 3
-slownni = ''
[phyml_default]
_desc = 'Phyml tree using +G+I+F, 4 classes and aLRT branch supports. Default models JTT/GTR'
_app = phyml
_aa_model = JTT # AA model used if no model selection is performed
_nt_model = GTR # Nt model used if no model selection is performed
--pinv = e # Proportion of invariant sites. Fixed value in the
# [0,1] range or "e" for estimated
--alpha = e # Gamma distribution shape parameter. fixed value or
# "e" for "estimated"
--nclasses = 4 # Number of rate categories
-o = tlr # Tree optimization
-f = m # e: estiamte character frequencies. m: character
# frequencies from model
--bootstrap = -2 # approximate likelihood ratio test returning
# Chi2-based parametric branch supports.
[phyml_default_bootstrap]
_inherits = phyml_default
_desc = 'Phyml tree using +G+I+F, 4 classes and 100 bootstraps. Default models JTT/GTR'
--bootstrap = 100
[raxml_default]
_desc = 'RAxML with default parameters, GAMMA JTT/GTR and aLRT branch supports.'
_app = raxml
_bootstrap = alrt # alrt, alrt_phyml or and integer number
_method = GAMMA # GAMMA or CAT
_aa_model = JTT # Model used if no model selection is performed
# _model_suffix = "I" or "IF"
_model_suffix = ""
-f = d
-p = 31416 # Random seed to generate starting tree. Make results reproducible
[raxml_default_bootstrap]
_inherits = raxml_default
_desc = 'RAxML with default parameters, GAMMA JTT/GTR and 100 boostrap replicates'
_bootstrap = 100
[iqtree_default]
_desc = 'IQTree with default parameters and alrt branch supports'
_app = iqtree
-alrt = 1000
-seed = 31416
[iqtree_bestmodel]
_inherits = iqtree_default
_desc = 'IQTree '
-m = TESTNEWONLY
[iqtree_codon_default]
_inherits = iqtree_default
_desc = 'IQTree'
-st = CODON
[iqtree_codon_bestmodel]
_inherits = iqtree_default
_desc = 'IQTree'
-st = CODON
-m = TEST
[iqtree_C10]
_inherits = iqtree_default
_desc = 'IQTree C10'
-m = C10
[iqtree_C30]
_inherits = iqtree_default
_desc = 'IQTree C30'
-m = C30
[iqtree_C60]
_inherits = iqtree_default
_desc = 'IQTree C60'
-m = C60
[treebest_ensembl]
_desc = '(EXPERIMENTAL, do not use)'
_app = phyml
_aa_model = JTT # AA model used if no model selection is performed
_nt_model = GTR # Nt model used if no model selection is performed
--no_memory_check = ""
--quiet = ""
--pinv = e # Proportion of invariant sites. Fixed value in the
# [0,1] range or "e" for estimated
--alpha = e # Gamma distribution shape parameter. fixed value or
# "e" for "estimated"
--nclasses = 4 # Number of rate categories
-o = tlr # Tree optimization
-f = m # e: estiamte character frequencies. m: character
# frequencies from model
--bootstrap = -2 # approximate likelihood ratio test returning
# Chi2-based parametric branch supports.
# #################
# SUPERMATRIX APPS
# ################
#dummy
[sptree_dummy]
_app = supermatrix
_desc = 'Only 4 genes are selected. Just for testing purposes'
_cog_selector = @cog_dummy
_alg_concatenator = @alg_concat_default
_aa_tree_builder = @fasttree_default
_nt_tree_builder = @fasttree_default
_appset = @builtin_apps
[cog_dummy]
_desc = 'Only 4 genes are selected. Just for testing purposes'
_app = cogselector
_species_missing_factor = 0.50
_max_species_missing_factor = 0.60
_max_cogs = 4
[alg_concat_default]
_app = concatalg
_default_aa_model = JTT
_default_nt_model = GTR
[cog_all]
_app = cogselector
_desc = 'all clusters of orthologous groups (COGs) will be used'
_species_missing_factor = 1.0
_max_species_missing_factor = 1.0
_max_cogs = 999999
[cog_100]
_desc = 'only COGs including 100% of the target species will be used'
_app = cogselector
_species_missing_factor = 0
_max_species_missing_factor = 0
_max_cogs = 999999
[cog_95]
_desc = 'all COGs including at least 95% of the target species will be used'
_app = cogselector
_species_missing_factor = 0.05
_max_species_missing_factor = 0.07
_max_cogs = 999999
[cog_90]
_desc = 'all COGs including at least 90% of the target species will be used'
_app = cogselector
_species_missing_factor = 0.10
_max_species_missing_factor = 0.15
_max_cogs = 999999
[cog_85]
_desc = 'all COGs including at least 85% of the target species will be used'
_app = cogselector
_species_missing_factor = 0.15
_max_species_missing_factor = 0.20
_max_cogs = 999999
# #################
# NPR configs
# ################
[splitter_default]
_desc = 'Select anchoring sequences from sister clade until reaching 10% of the actual partition size.'
_app = treesplitter
_max_outgroup_size = 10%
_min_outgroup_support = 0.90
_outgroup_topology_dist = False
_first_split = midpoint
|