1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
|
# #START_LICENSE###########################################################
#
#
# This file is part of the Environment for Tree Exploration program
# (ETE). http://etetoolkit.org
#
# ETE is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# ETE is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
# License for more details.
#
# You should have received a copy of the GNU General Public License
# along with ETE. If not, see <http://www.gnu.org/licenses/>.
#
#
# ABOUT THE ETE PACKAGE
# =====================
#
# ETE is distributed under the GPL copyleft license (2008-2015).
#
# If you make use of ETE in published work, please cite:
#
# Jaime Huerta-Cepas, Joaquin Dopazo and Toni Gabaldon.
# ETE: a python Environment for Tree Exploration. Jaime BMC
# Bioinformatics 2010,:24doi:10.1186/1471-2105-11-24
#
# Note that extra references to the specific methods implemented in
# the toolkit may be available in the documentation.
#
# More info at http://etetoolkit.org. Contact: huerta@embl.de
#
#
# #END_LICENSE#############################################################
from __future__ import absolute_import
import math
import colorsys
from .qt import *
from .main import _leaf, tracktime
from .node_gui_actions import _NodeActions
class _LineItem(QGraphicsLineItem):
def paint(self, painter, option, widget):
#painter.setClipRect( option.exposedRect )
QGraphicsLineItem.paint(self, painter, option, widget)
class ArcPartition(QGraphicsPathItem):
def __init__(self, parent=None):
QGraphicsPathItem.__init__(self, parent)
self.setCacheMode(QGraphicsItem.DeviceCoordinateCache)
#self.setCacheMode(QGraphicsItem.ItemCoordinateCache)
def set_arc(self, cxdist, cydist, r1, r2, angle_start, angle_end):
""" Draws a 2D arc with two arc lines of length r1 (inner) and
r2 (outer) with center in cxdist,cydist. angle_start and
angle_end are relative to the starting rotation point equal 0
degrees """
#self.data = [cxdist, cydist, r1, r2, angle_start, angle_end]
d1 = r1 * 2
d2 = r2 * 2
r1_xstart = -r1 - cxdist
r1_ystart = -r1 + cydist
r2_xstart = -r2 - cxdist
r2_ystart = -r2 + cydist
angle_start = angle_start
angle_end = angle_end
angle_span = angle_end + angle_start
path = QPainterPath()
# Calculate start and end points of inner arc
path.arcMoveTo(r1_xstart, r1_ystart, d1, d1, -angle_start)
i1 = path.currentPosition()
path.arcMoveTo(r1_xstart, r1_ystart, d1, d1, angle_end)
i2 = path.currentPosition()
# Moves to outer arc start position
path.arcMoveTo(r2_xstart, r2_ystart , d2, d2, -angle_start)
o1 = path.currentPosition()
# Draws outer arc
path.arcTo(r2_xstart, r2_ystart, d2, d2, -angle_start, angle_span)
o2 = path.currentPosition()
# Draws line to the end point in inner arc (straight line)
path.lineTo(i2)
# Draws inner arc from end point to to start
path.arcTo(r1_xstart, r1_ystart, d1, d1, angle_end, -angle_span)
# Draws line to the start point of outer arc (straight line)
path.lineTo(o1)
self.setPath(path)
def paint(self, painter, option, index):
return QGraphicsPathItem.paint(self, painter, option, index)
class _ArcItem(QGraphicsPathItem):
def __init__(self):
QGraphicsPathItem.__init__(self)
def set_arc(self, cxdist, cydist, r1, r2, angle_start, angle_end):
""" Draws a 2D arc with two arc lines of length r1 (inner) and
r2 (outer) with center in cxdist,cydist. angle_start and
angle_end are relative to the starting rotation point equal 0
degrees """
def clockwise(a):
if a<0:
return -1 * (a)
else:
return -a
return a
#self.data = [cxdist, cydist, r1, r2, angle_start, angle_end]
d1 = r1 * 2
d2 = r2 * 2
r1_xstart = -r1 - cxdist
r1_ystart = -r1 + cydist
r2_xstart = -r2 - cxdist
r2_ystart = -r2 + cydist
# ArcTo does not use clockwise angles
angle_start = clockwise(angle_start)
angle_end = clockwise(angle_end)
angle_span = angle_end - angle_start
path = QPainterPath()
# Calculate start and end points of inner arc
path.arcMoveTo(r1_xstart, r1_ystart, d1, d1, angle_start)
i1 = path.currentPosition()
path.arcMoveTo(r1_xstart, r1_ystart, d1, d1, angle_end)
i2 = path.currentPosition()
# Moves to outer arc start position
path.arcMoveTo(r2_xstart, r2_ystart , d2, d2, angle_start)
o1 = path.currentPosition()
# Draws outer arc
path.arcTo(r2_xstart, r2_ystart, d2, d2, angle_start, angle_span)
o2 = path.currentPosition()
# Draws line to the end point in inner arc (straight line)
path.lineTo(i2)
# Draws inner arc from end point to to start
path.arcTo(r1_xstart, r1_ystart, d1, d1, angle_end, -angle_span)
# Draws line to the start point of outer arc (straight line)
#path.lineTo(o1)
self.setPath(path)
def paint(self, painter, option, index):
return QGraphicsPathItem.paint(self, painter, option, index)
def rotate_and_displace(item, rotation, height, offset):
""" Rotates an item of a given height over its own left most edis and moves
the item offset units in the rotated x axis """
t = QTransform()
t.rotate(rotation)
t.translate(0, - (height / 2))
t.translate(offset, 0)
item.setTransform(t)
def get_min_radius(w, h, angle, xoffset):
""" returns the radius and X-displacement required to render a
rectangle (w,h) within and given angle (a)."""
# converts to radians
angle = (angle * math.pi) / 180
b = xoffset + w
a = h / 2
off = 0
if xoffset:
effective_angle = math.atan(a / xoffset)
if effective_angle > angle / 2 and angle / 2 < math.pi:
off = a / math.tan(angle / 2)
bb = off + w
#r = math.sqrt(a**2 + bb**2)
r = math.hypot(a, bb)
off = max (off, xoffset) - xoffset
else:
#r = math.sqrt(a**2 + b**2)
r = math.hypot(a, b)
else:
# It happens on root nodes
#r1 = math.sqrt(a**2 + b**2)
r1 = math.hypot(a, b)
#effective_angle = math.asin(a/r1)
#r2 = w / math.cos(effective_angle)
#print r1, r2
r = r1#+r2
return r, off
def render_circular(root_node, n2i, rot_step):
max_r = 0.0
for node in root_node.traverse('preorder', is_leaf_fn=_leaf):
item = n2i[node]
w = sum(item.widths[1:5])
h = item.effective_height
parent_radius = n2i[node.up].radius if node.up and node.up in n2i else item.xoff
angle = rot_step if _leaf(node) else item.angle_span
if hasattr(item, "radius"):
r = item.radius
xoffset = 0
else:
r, xoffset = get_min_radius(w, h, angle, parent_radius + item.widths[0])
item.radius = r
node.add_features(rad=item.radius)
#if xoffset: # DEBUG ONLY. IF Scale is correct, this should not be printed
# print "Offset detected in node", xoffset
rotate_and_displace(item.content, item.rotation, h, parent_radius)
max_r = max(max_r, r)
if not _leaf(node) and len(node.children) > 1:
first_c = n2i[node.children[0]]
last_c = n2i[node.children[-1]]
# Vertical arc Line
rot_end = n2i[node.children[-1]].rotation
rot_start = n2i[node.children[0]].rotation
rot_span = abs(rot_end - rot_start)
C = item.vt_line
C.setParentItem(item)
path = QPainterPath()
# Counter clock wise
start = r - node.img_style["vt_line_width"]/2
path.arcMoveTo(-start, -start, start * 2, start * 2, 360 - rot_start - rot_span)
path.arcTo(-start, -start, start * 2, start * 2, 360 - rot_start - rot_span, rot_span)
# Faces
C.setPath(path)
item.static_items.append(C)
if hasattr(item, "content"):
# If applies, it sets the length of the extra branch length
if item.extra_branch_line:
xtra = item.extra_branch_line.line().dx()
if xtra > 0:
xtra = xoffset + xtra
else:
xtra = xoffset
item.extra_branch_line.setLine(item.branch_length, item.center,\
item.branch_length + xtra , item.center)
item.nodeRegion.setWidth(item.nodeRegion.width()+xtra)
# And moves elements
if xoffset:
for i in item.movable_items:
i.moveBy(xoffset, 0)
n2i[root_node].max_r = max_r
return max_r
def init_circular_leaf_item(node, n2i, n2f, last_rotation, rot_step):
item = n2i[node]
item.rotation = last_rotation
item.full_start = last_rotation - (rot_step / 2)
item.full_end = last_rotation + (rot_step / 2)
item.angle_span = rot_step
#item.center = item.nodeRegion.height() / 2
item.effective_height = get_effective_height(node, n2i, n2f)
item.center = item.effective_height/2
#item.setParentItem(n2i[node.up])
def init_circular_node_item(node, n2i, n2f):
item = n2i[node]
if len(node.children) > 1:
first_c = n2i[node.children[0]]
last_c = n2i[node.children[-1]]
rot_start = first_c.rotation
rot_end = last_c.rotation
item.rotation = rot_start + ((rot_end - rot_start) / 2)
item.full_start = first_c.full_start
item.full_end = last_c.full_end
item.angle_span = item.full_end - item.full_start
else:
child = n2i[node.children[0]]
rot_start = child.full_start
rot_end = child.full_end
item.angle_span = child.angle_span
item.rotation = child.rotation
#item.rotation = rot_start + ((rot_end - rot_start) / 2)
item.full_start = child.full_start
item.full_end = child.full_end
item.effective_height = get_effective_height(node, n2i, n2f)
item.center = item.effective_height/2
def get_effective_height(n, n2i, n2f):
"""Returns the height needed to calculated the adjustment
of node to its available angle.
"""
down_h = n2f[n]["branch-bottom"].h
up_h = n2f[n]["branch-top"].h
right_h = n2i[n].nodeRegion.height()/2
up_h = max(right_h, up_h)
down_h = max(right_h, down_h)
fullR = n2i[n].fullRegion
center = fullR.height()/2
return max(up_h, down_h)*2
#@tracktime
def calculate_optimal_scale(root_node, n2i, rot_step, img):
""" Note: Seems to be fast. 0.5s from a tree of 10.000 leaves"""
n2minradius = {}
n2sumdist = {}
n2sumwidth = {}
visited_nodes = []
# Calcula la posicion minima de los elementos (con scale=0, es
# decir, sin tener en cuenta branch lengths.
for node in root_node.traverse('preorder', is_leaf_fn=_leaf):
visited_nodes.append(node)
ndist = node.dist if not img.force_topology else 1.0
item = n2i[node]
# Uses size of all node parts, except branch length
w = sum(item.widths[1:5])
h = item.effective_height
parent_radius = n2minradius.get(node.up, 0)
angle = rot_step if _leaf(node) else item.angle_span
r, xoffset = get_min_radius(w, h, angle, parent_radius)
n2minradius[node] = r
n2sumdist[node] = n2sumdist.get(node.up, 0) + ndist
# versed sine: the little extra line needed to complete the
# radius.
#vs = r - (parent_radius + xoffset + w)
n2sumwidth[node] = n2sumwidth.get(node.up, 0) + sum(item.widths[2:5]) #+ vs
root_opening = 0.0
most_distant = max(n2sumdist.values())
if most_distant == 0: return 0.0
best_scale = None
for node in visited_nodes:
item = n2i[node]
ndist = node.dist if not img.force_topology else 1.0
if best_scale is None:
best_scale = (n2minradius[node] - n2sumwidth[node]) / ndist if ndist else 0.0
else:
#Whats the expected radius of this node?
current_rad = n2sumdist[node] * best_scale + (n2sumwidth[node] + root_opening)
# If still too small, it means we need to increase scale.
if current_rad < n2minradius[node]:
# This is a simplification of the real ecuacion needed
# to calculate the best scale. Given that I'm not
# taking into account the versed sine of each parent
# node, the equation is actually very simple.
if img.root_opening_factor:
best_scale = (n2minradius[node] - (n2sumwidth[node])) / (n2sumdist[node] + (most_distant * img.root_opening_factor))
root_opening = most_distant * best_scale * img.root_opening_factor
else:
best_scale = (n2minradius[node] - (n2sumwidth[node]) + root_opening) / n2sumdist[node]
#print "OOps adjusting scale", ndist, best_scale, n2minradius[node], current_rad, item.heights[5], node.name
# If the width of branch top/bottom faces is not covered,
# we can also increase the scale to adjust it. This may
# produce huge scales, so let's keep it optional
if img.optimal_scale_level == "full" and \
item.widths[1] > ndist * best_scale:
best_scale = item.widths[1] / ndist
#print "OOps adjusting scale because branch-faces", ndist, best_scale, item.widths[1]
# Adjust scale for aligned faces
if not img.allow_face_overlap:
aligned_h = [(n2i[node].heights[5], node) for node in visited_nodes]
aligned_h.sort(reverse=True, key=lambda x: x[0])
maxh, maxh_node = aligned_h[0]
angle = n2i[maxh_node].angle_span
rad, off = get_min_radius(1, maxh, angle, 0.0001)
min_alg_scale = None
for node in visited_nodes:
if n2i[node].heights[5]:
new_scale = (rad - (n2sumwidth[node] + root_opening)) / n2sumdist[node]
min_alg_scale = min(new_scale, min_alg_scale) if min_alg_scale is not None else new_scale
if min_alg_scale is not None and min_alg_scale > best_scale:
best_scale = min_alg_scale
if root_opening:
n2i[root_node].nodeRegion.adjust(root_opening, 0, root_opening, 0)
n2i[root_node].fullRegion.adjust(root_opening, 0, root_opening, 0)
n2i[root_node].xoff = root_opening
#n2i[root_node].widths[0] += root_opening
#for node in visited_nodes:
# item = n2i[node]
# h = item.effective_height
# a = n2sumdist[node] * best_scale + n2sumwidth.get(node)
# b = h/2
# item.radius = math.sqrt(a**2 + b**2)
#print "root opening", root_opening
#best_scale = max(best_scale, min_scale)
return best_scale
|