1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
|
from __future__ import absolute_import
# #START_LICENSE###########################################################
#
#
# This file is part of the Environment for Tree Exploration program
# (ETE). http://etetoolkit.org
#
# ETE is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# ETE is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
# License for more details.
#
# You should have received a copy of the GNU General Public License
# along with ETE. If not, see <http://www.gnu.org/licenses/>.
#
#
# ABOUT THE ETE PACKAGE
# =====================
#
# ETE is distributed under the GPL copyleft license (2008-2015).
#
# If you make use of ETE in published work, please cite:
#
# Jaime Huerta-Cepas, Joaquin Dopazo and Toni Gabaldon.
# ETE: a python Environment for Tree Exploration. Jaime BMC
# Bioinformatics 2010,:24doi:10.1186/1471-2105-11-24
#
# Note that extra references to the specific methods implemented in
# the toolkit may be available in the documentation.
#
# More info at http://etetoolkit.org. Contact: huerta@embl.de
#
#
# #END_LICENSE#############################################################
from math import log, exp
from six.moves import range
from numpy import floor, pi as PI, sin
from .. import Tree
def get_rooting(tol, seed_species, agename = False):
'''
returns dict of species age for a given TOL and a given seed
**Example:**
::
tol = "((((((((Drosophila melanogaster,(Drosophila simulans,Drosophila secchellia)),(Drosophila yakuba,Drosophila erecta))[&&NHX:name=melanogaster subgroup],Drosophila ananassae)[&&NHX:name=melanogaster group],(Drosophila pseudoobscura,Drosophila persimilis)[&&NHX:name=obscura group])[&&NHX:name=Sophophora Old World],Drosophila willistoni)[&&NHX:name=subgenus Sophophora],(Drosophila grimshawi,(Drosophila virilis,Drosophila mojavensis))[&&NHX:name=subgenus Drosophila])[&&NHX:name=genus Drosophila],(Anopheles gambiae,Aedes aegypti)[&&NHX:name=Culicidae])[&&NHX:name=Arthropoda],Caenorhabditis elegans)[&&NHX:name=Animalia];"
seed = "Drosophila melanogaster"
ROOTING, age2name = get_rooting (tol, seed, True)
ROOTING == {"Aedes aegypti" : 7,
"Anopheles gambiae" : 7,
"Caenorhabditis elegans" : 8,
"Drosophila ananassae" : 3,
"Drosophila erecta" : 2,
"Drosophila grimshawi" : 6,
"Drosophila melanogaster" : 1,
"Drosophila mojavensis" : 6,
"Drosophila persimilis" : 4,
"Drosophila pseudoobscura": 4,
"Drosophila secchellia" : 1,
"Drosophila simulans" : 1,
"Drosophila virilis" : 6,
"Drosophila willistoni" : 5,
"Drosophila yakuba" : 2}
age2name == {1: "Drosophila melanogaster. Drosophila simulans. Drosophila secchellia",
2: "melanogaster subgroup",
3: "melanogaster group",
4: "Sophophora Old World",
5: "subgenus Sophophora",
6: "genus Drosophila",
7: "Arthropoda",
8: "Animalia"}
:argument seed_species: species name
:argument False agename: if True, also returns the inverse dictionary
:returns: ROOTING dictionary with age of each species
'''
tol = Tree (tol)
try:
node = tol.search_nodes (name=seed_species)[0]
except IndexError:
exit ('ERROR: Seed species not found in tree\n')
age = 1
ROOTING = {}
if agename:
age2name = {}
while not node.is_root():
node = node.up
for leaf in node.get_leaf_names():
if agename:
if node.name == 'NoName':
nam = '.'.join (node.get_leaf_names())
else:
nam = node.name
age2name.setdefault (age, nam)
ROOTING.setdefault (leaf, age)
age += 1
if agename:
return ROOTING, age2name
return ROOTING
def translate(sequence):
'''
little function to translate DNA to protein...
from: http://python.genedrift.org/
TODO : inseqgroup functions?
:argument sequence: string
:returns: translated sequence
'''
#dictionary with the genetic code
gencode = {
'ATA':'I', 'ATC':'I', 'ATT':'I', 'ATG':'M',
'ACA':'T', 'ACC':'T', 'ACG':'T', 'ACT':'T',
'AAC':'N', 'AAT':'N', 'AAA':'K', 'AAG':'K',
'AGC':'S', 'AGT':'S', 'AGA':'R', 'AGG':'R',
'CTA':'L', 'CTC':'L', 'CTG':'L', 'CTT':'L',
'CCA':'P', 'CCC':'P', 'CCG':'P', 'CCT':'P',
'CAC':'H', 'CAT':'H', 'CAA':'Q', 'CAG':'Q',
'CGA':'R', 'CGC':'R', 'CGG':'R', 'CGT':'R',
'GTA':'V', 'GTC':'V', 'GTG':'V', 'GTT':'V',
'GCA':'A', 'GCC':'A', 'GCG':'A', 'GCT':'A',
'GAC':'D', 'GAT':'D', 'GAA':'E', 'GAG':'E',
'GGA':'G', 'GGC':'G', 'GGG':'G', 'GGT':'G',
'TCA':'S', 'TCC':'S', 'TCG':'S', 'TCT':'S',
'TTC':'F', 'TTT':'F', 'TTA':'L', 'TTG':'L',
'TAC':'Y', 'TAT':'Y', 'TAA':'.', 'TAG':'.',
'TGC':'C', 'TGT':'C', 'TGA':'.', 'TGG':'W',
'---':'-', 'nnn':'x', 'NNN':'X'
}
ambig = {'Y':['A', 'G'], 'R':['C', 'T'], 'M':['G', 'T'], 'K':['A', 'C'], \
'S':['G', 'C'],'W':['A', 'T'], 'V':['C', 'G', 'T'], \
'H':['A', 'G', 'T'], 'D':['A', 'C', 'T'], 'B':['A', 'C', 'G'], \
'N':['A', 'C', 'G', 'T']}
proteinseq = ''
#loop to read DNA sequence in codons, 3 nucleotides at a time
sequence = sequence.upper()
for n in range(0, len(sequence), 3):
#checking to see if the dictionary has the key
try:
proteinseq += gencode[sequence[n:n+3]]
except KeyError:
newcod = []
for nt in sequence[n:n+3]:
if nt in ambig:
newcod.append(ambig[nt])
else :
newcod.append(list (nt))
aa = ''
for nt1 in newcod[0]:
for nt2 in newcod[1]:
for nt3 in newcod[2]:
try:
if aa == '':
aa = gencode[nt1+nt2+nt3]
elif gencode[nt1+nt2+nt3] != aa:
aa = 'X'
break
except KeyError:
aa = 'X'
break
proteinseq += aa
return proteinseq
# reused from pycogent
ROUND_ERROR = 1e-14
MAXLOG = 7.09782712893383996843E2
MAXLGM = 2.556348e305
big = 4.503599627370496e15
biginv = 2.22044604925031308085e-16
MACHEP = 1.11022302462515654042E-16
LS2PI = 0.91893853320467274178
LOGPI = 1.14472988584940017414
def chi_high(x, df):
"""Returns right-hand tail of chi-square distribution (x to infinity).
df, the degrees of freedom, ranges from 1 to infinity (assume integers).
Typically, df is (r-1)*(c-1) for a r by c table.
Result ranges from 0 to 1.
See Cephes docs for details.
"""
x = fix_rounding_error(x)
if x < 0:
raise ValueError("chi_high: x must be >= 0 (got %s)." % x)
if df < 1:
raise ValueError("chi_high: df must be >= 1 (got %s)." % df)
return igamc(float(df)/2, x/2)
def fix_rounding_error(x):
"""If x is almost in the range 0-1, fixes it.
Specifically, if x is between -ROUND_ERROR and 0, returns 0.
If x is between 1 and 1+ROUND_ERROR, returns 1.
"""
if -ROUND_ERROR < x < 0:
return 0
elif 1 < x < 1+ROUND_ERROR:
return 1
return x
def igamc(a,x):
"""Complemented incomplete Gamma integral: see Cephes docs."""
if x <= 0 or a <= 0:
return 1
if x < 1 or x < a:
return 1 - igam(a, x)
ax = a * log(x) - x - lgam(a)
if ax < -MAXLOG: #underflow
return 0
ax = exp(ax)
#continued fraction
y = 1 - a
z = x + y + 1
c = 0
pkm2 = 1
qkm2 = x
pkm1 = x + 1
qkm1 = z * x
ans = pkm1/qkm1
while 1:
c += 1
y += 1
z += 2
yc = y * c
pk = pkm1 * z - pkm2 * yc
qk = qkm1 * z - qkm2 * yc
if qk != 0:
r = pk/qk
t = abs((ans-r)/r)
ans = r
else:
t = 1
pkm2 = pkm1
pkm1 = pk
qkm2 = qkm1
qkm1 = qk
if abs(pk) > big:
pkm2 *= biginv
pkm1 *= biginv
qkm2 *= biginv
qkm1 *= biginv
if t <= MACHEP:
break
return ans * ax
def lgam(x):
"""Natural log of the gamma fuction: see Cephes docs for details"""
if x < -34:
q = -x
w = lgam(q)
p = floor(q)
if p == q:
raise OverflowError("lgam returned infinity.")
z = q - p
if z > 0.5:
p += 1
z = p - q
z = q * sin(PI * z)
if z == 0:
raise OverflowError("lgam returned infinity.")
z = LOGPI - log(z) - w
return z
if x < 13:
z = 1
p = 0
u = x
while u >= 3:
p -= 1
u = x + p
z *= u
while u < 2:
if u == 0:
raise OverflowError("lgam returned infinity.")
z /= u
p += 1
u = x + p
if z < 0:
z = -z
if u == 2:
return log(z)
p -= 2
x = x + p
p = x * polevl(x, GB)/polevl(x,GC)
return log(z) + p
if x > MAXLGM:
raise OverflowError("Too large a value of x in lgam.")
q = (x - 0.5) * log(x) - x + LS2PI
if x > 1.0e8:
return q
p = 1/(x*x)
if x >= 1000:
q += (( 7.9365079365079365079365e-4 * p
-2.7777777777777777777778e-3) *p
+ 0.0833333333333333333333) / x
else:
q += polevl(p, GA)/x
return q
def polevl(x, coef):
"""evaluates a polynomial y = C_0 + C_1x + C_2x^2 + ... + C_Nx^N
Coefficients are stored in reverse order, i.e. coef[0] = C_N
"""
result = 0
for c in coef:
result = result * x + c
return result
def igam(a, x):
"""Left tail of incomplete gamma function: see Cephes docs for details"""
if x <= 0 or a <= 0:
return 0
if x > 1 and x > a:
return 1 - igamc(a,x)
#Compute x**a * exp(x) / Gamma(a)
ax = a * log(x) - x - lgam(a)
if ax < -MAXLOG: #underflow
return 0.0
ax = exp(ax)
#power series
r = a
c = 1
ans = 1
while 1:
r += 1
c *= x/r
ans += c
if c/ans <= MACHEP:
break
return ans * ax / a
#Coefficients for Gamma follow:
GA = [
8.11614167470508450300E-4,
-5.95061904284301438324E-4,
7.93650340457716943945E-4,
-2.77777777730099687205E-3,
8.33333333333331927722E-2,
]
GB = [
-1.37825152569120859100E3,
-3.88016315134637840924E4,
-3.31612992738871184744E5,
-1.16237097492762307383E6,
-1.72173700820839662146E6,
-8.53555664245765465627E5,
]
GC = [
1.00000000000000000000E0,
-3.51815701436523470549E2,
-1.70642106651881159223E4,
-2.20528590553854454839E5,
-1.13933444367982507207E6,
-2.53252307177582951285E6,
-2.01889141433532773231E6,
]
GP = [
1.60119522476751861407E-4,
1.19135147006586384913E-3,
1.04213797561761569935E-2,
4.76367800457137231464E-2,
2.07448227648435975150E-1,
4.94214826801497100753E-1,
9.99999999999999996796E-1,
]
GQ = [
-2.31581873324120129819E-5,
5.39605580493303397842E-4,
-4.45641913851797240494E-3,
1.18139785222060435552E-2,
3.58236398605498653373E-2,
-2.34591795718243348568E-1,
7.14304917030273074085E-2,
1.00000000000000000320E0,
]
|