File: utils.py

package info (click to toggle)
python-ete3 3.1.3%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 14,876 kB
  • sloc: python: 52,497; javascript: 12,959; xml: 4,903; ansic: 69; sql: 65; makefile: 26; sh: 7
file content (413 lines) | stat: -rw-r--r-- 12,335 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
from __future__ import absolute_import
# #START_LICENSE###########################################################
#
#
# This file is part of the Environment for Tree Exploration program
# (ETE).  http://etetoolkit.org
#
# ETE is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# ETE is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
# License for more details.
#
# You should have received a copy of the GNU General Public License
# along with ETE.  If not, see <http://www.gnu.org/licenses/>.
#
#
#                     ABOUT THE ETE PACKAGE
#                     =====================
#
# ETE is distributed under the GPL copyleft license (2008-2015).
#
# If you make use of ETE in published work, please cite:
#
# Jaime Huerta-Cepas, Joaquin Dopazo and Toni Gabaldon.
# ETE: a python Environment for Tree Exploration. Jaime BMC
# Bioinformatics 2010,:24doi:10.1186/1471-2105-11-24
#
# Note that extra references to the specific methods implemented in
# the toolkit may be available in the documentation.
#
# More info at http://etetoolkit.org. Contact: huerta@embl.de
#
#
# #END_LICENSE#############################################################


from math import log, exp

from six.moves import range
from numpy import floor, pi as PI, sin

from .. import Tree


def get_rooting(tol, seed_species, agename = False):
    '''
    returns dict of species age for a given TOL and a given seed

    **Example:**

    ::

      tol  = "((((((((Drosophila melanogaster,(Drosophila simulans,Drosophila secchellia)),(Drosophila yakuba,Drosophila erecta))[&&NHX:name=melanogaster subgroup],Drosophila ananassae)[&&NHX:name=melanogaster group],(Drosophila pseudoobscura,Drosophila persimilis)[&&NHX:name=obscura group])[&&NHX:name=Sophophora Old World],Drosophila willistoni)[&&NHX:name=subgenus Sophophora],(Drosophila grimshawi,(Drosophila virilis,Drosophila mojavensis))[&&NHX:name=subgenus Drosophila])[&&NHX:name=genus Drosophila],(Anopheles gambiae,Aedes aegypti)[&&NHX:name=Culicidae])[&&NHX:name=Arthropoda],Caenorhabditis elegans)[&&NHX:name=Animalia];"
      seed = "Drosophila melanogaster"
      ROOTING, age2name = get_rooting (tol, seed, True)

      ROOTING == {"Aedes aegypti"           : 7,
                  "Anopheles gambiae"       : 7,
                  "Caenorhabditis elegans"  : 8,
                  "Drosophila ananassae"    : 3,
                  "Drosophila erecta"       : 2,
                  "Drosophila grimshawi"    : 6,
                  "Drosophila melanogaster" : 1,
                  "Drosophila mojavensis"   : 6,
                  "Drosophila persimilis"   : 4,
                  "Drosophila pseudoobscura": 4,
                  "Drosophila secchellia"   : 1,
                  "Drosophila simulans"     : 1,
                  "Drosophila virilis"      : 6,
                  "Drosophila willistoni"   : 5,
                  "Drosophila yakuba"       : 2}

      age2name == {1: "Drosophila melanogaster. Drosophila simulans. Drosophila secchellia",
                   2: "melanogaster subgroup",
                   3: "melanogaster group",
                   4: "Sophophora Old World",
                   5: "subgenus Sophophora",
                   6: "genus Drosophila",
                   7: "Arthropoda",
                   8: "Animalia"}

    :argument seed_species: species name
    :argument False agename: if True, also returns the inverse dictionary

    :returns: ROOTING dictionary with age of each species

    '''

    tol = Tree (tol)
    try:
        node = tol.search_nodes (name=seed_species)[0]
    except IndexError:
        exit ('ERROR: Seed species not found in tree\n')
    age = 1
    ROOTING = {}
    if agename:
        age2name = {}
    while not node.is_root():
        node = node.up
        for leaf in node.get_leaf_names():
            if agename:
                if node.name == 'NoName':
                    nam = '.'.join (node.get_leaf_names())
                else:
                    nam = node.name
                age2name.setdefault (age, nam)
            ROOTING.setdefault (leaf, age)
        age += 1
    if agename:
        return ROOTING, age2name
    return ROOTING


def translate(sequence):
    '''
    little function to translate DNA to protein...
    from: http://python.genedrift.org/
    TODO : inseqgroup functions?

    :argument sequence: string

    :returns: translated sequence
    '''
    #dictionary with the genetic code
    gencode = {
        'ATA':'I', 'ATC':'I', 'ATT':'I', 'ATG':'M',
        'ACA':'T', 'ACC':'T', 'ACG':'T', 'ACT':'T',
        'AAC':'N', 'AAT':'N', 'AAA':'K', 'AAG':'K',
        'AGC':'S', 'AGT':'S', 'AGA':'R', 'AGG':'R',
        'CTA':'L', 'CTC':'L', 'CTG':'L', 'CTT':'L',
        'CCA':'P', 'CCC':'P', 'CCG':'P', 'CCT':'P',
        'CAC':'H', 'CAT':'H', 'CAA':'Q', 'CAG':'Q',
        'CGA':'R', 'CGC':'R', 'CGG':'R', 'CGT':'R',
        'GTA':'V', 'GTC':'V', 'GTG':'V', 'GTT':'V',
        'GCA':'A', 'GCC':'A', 'GCG':'A', 'GCT':'A',
        'GAC':'D', 'GAT':'D', 'GAA':'E', 'GAG':'E',
        'GGA':'G', 'GGC':'G', 'GGG':'G', 'GGT':'G',
        'TCA':'S', 'TCC':'S', 'TCG':'S', 'TCT':'S',
        'TTC':'F', 'TTT':'F', 'TTA':'L', 'TTG':'L',
        'TAC':'Y', 'TAT':'Y', 'TAA':'.', 'TAG':'.',
        'TGC':'C', 'TGT':'C', 'TGA':'.', 'TGG':'W',
        '---':'-', 'nnn':'x', 'NNN':'X'
    }
    ambig = {'Y':['A', 'G'], 'R':['C', 'T'], 'M':['G', 'T'], 'K':['A', 'C'], \
             'S':['G', 'C'],'W':['A', 'T'], 'V':['C', 'G', 'T'], \
             'H':['A', 'G', 'T'], 'D':['A', 'C', 'T'], 'B':['A', 'C', 'G'], \
             'N':['A', 'C', 'G', 'T']}
    proteinseq = ''
    #loop to read DNA sequence in codons, 3 nucleotides at a time
    sequence = sequence.upper()
    for n in range(0, len(sequence), 3):
        #checking to see if the dictionary has the key
        try:
            proteinseq += gencode[sequence[n:n+3]]
        except KeyError:
            newcod = []
            for nt in sequence[n:n+3]:
                if nt in ambig:
                    newcod.append(ambig[nt])
                else :
                    newcod.append(list (nt))
            aa = ''
            for nt1 in newcod[0]:
                for nt2 in newcod[1]:
                    for nt3 in newcod[2]:
                        try:
                            if aa == '':
                                aa  = gencode[nt1+nt2+nt3]
                            elif gencode[nt1+nt2+nt3] != aa:
                                aa = 'X'
                                break
                        except KeyError:
                            aa = 'X'
                            break
            proteinseq += aa
    return proteinseq


# reused from pycogent
ROUND_ERROR = 1e-14
MAXLOG      = 7.09782712893383996843E2
MAXLGM      = 2.556348e305
big         = 4.503599627370496e15
biginv      = 2.22044604925031308085e-16
MACHEP      = 1.11022302462515654042E-16
LS2PI       =  0.91893853320467274178
LOGPI       = 1.14472988584940017414


def chi_high(x, df):
    """Returns right-hand tail of chi-square distribution (x to infinity).

    df, the degrees of freedom, ranges from 1 to infinity (assume integers).
    Typically, df is (r-1)*(c-1) for a r by c table.

    Result ranges from 0 to 1.

    See Cephes docs for details.
    """
    x = fix_rounding_error(x)

    if x < 0:
        raise ValueError("chi_high: x must be >= 0 (got %s)." % x)
    if df < 1:
        raise ValueError("chi_high: df must be >= 1 (got %s)." % df)
    return igamc(float(df)/2, x/2)


def fix_rounding_error(x):
    """If x is almost in the range 0-1, fixes it.

    Specifically, if x is between -ROUND_ERROR and 0, returns 0.
    If x is between 1 and 1+ROUND_ERROR, returns 1.
    """
    if -ROUND_ERROR < x < 0:
        return 0
    elif 1 < x < 1+ROUND_ERROR:
        return 1
    return x


def igamc(a,x):
    """Complemented incomplete Gamma integral: see Cephes docs."""
    if x <= 0 or a <= 0:
        return 1
    if x < 1 or x < a:
        return 1 - igam(a, x)
    ax = a * log(x) - x - lgam(a)
    if ax < -MAXLOG:    #underflow
        return 0
    ax = exp(ax)
    #continued fraction
    y = 1 - a
    z = x + y + 1
    c = 0
    pkm2 = 1
    qkm2 = x
    pkm1 = x + 1
    qkm1 = z * x
    ans = pkm1/qkm1

    while 1:
        c += 1
        y += 1
        z += 2
        yc = y * c
        pk = pkm1 * z - pkm2 * yc
        qk = qkm1 * z - qkm2 * yc
        if qk != 0:
            r = pk/qk
            t = abs((ans-r)/r)
            ans = r
        else:
            t = 1
        pkm2 = pkm1
        pkm1 = pk
        qkm2 = qkm1
        qkm1 = qk
        if abs(pk) > big:
            pkm2 *= biginv
            pkm1 *= biginv
            qkm2 *= biginv
            qkm1 *= biginv
        if t <= MACHEP:
            break
    return ans * ax


def lgam(x):
    """Natural log of the gamma fuction: see Cephes docs for details"""
    if x < -34:
        q = -x
        w = lgam(q)
        p = floor(q)
        if p == q:
            raise OverflowError("lgam returned infinity.")
        z = q - p
        if z > 0.5:
            p += 1
            z = p - q
        z = q * sin(PI * z)
        if z == 0:
            raise OverflowError("lgam returned infinity.")
        z = LOGPI - log(z) - w
        return z
    if x < 13:
        z = 1
        p = 0
        u = x
        while u >= 3:
            p -= 1
            u = x + p
            z *= u
        while u < 2:
            if u == 0:
                raise OverflowError("lgam returned infinity.")
            z /= u
            p += 1
            u = x + p
        if z < 0:
            z = -z
        if u == 2:
            return log(z)
        p -= 2
        x = x + p
        p = x * polevl(x, GB)/polevl(x,GC)
        return log(z) + p
    if x > MAXLGM:
        raise OverflowError("Too large a value of x in lgam.")
    q = (x - 0.5) * log(x) - x + LS2PI
    if x > 1.0e8:
        return q
    p = 1/(x*x)
    if x >= 1000:
        q += ((  7.9365079365079365079365e-4 * p
                 -2.7777777777777777777778e-3) *p
              + 0.0833333333333333333333) / x
    else:
        q += polevl(p, GA)/x
    return q


def polevl(x, coef):
    """evaluates a polynomial y = C_0 + C_1x + C_2x^2 + ... + C_Nx^N

    Coefficients are stored in reverse order, i.e. coef[0] = C_N
    """
    result = 0
    for c in coef:
        result = result * x + c
    return result


def igam(a, x):
    """Left tail of incomplete gamma function: see Cephes docs for details"""
    if x <= 0 or a <= 0:
        return 0
    if x > 1 and x > a:
        return 1 - igamc(a,x)

    #Compute x**a * exp(x) / Gamma(a)

    ax = a * log(x) - x - lgam(a)
    if ax < -MAXLOG:    #underflow
        return 0.0
    ax = exp(ax)

    #power series
    r = a
    c = 1
    ans = 1
    while 1:
        r += 1
        c *= x/r
        ans += c
        if c/ans <= MACHEP:
            break

    return ans * ax / a

#Coefficients for Gamma follow:
GA = [
    8.11614167470508450300E-4,
    -5.95061904284301438324E-4,
    7.93650340457716943945E-4,
    -2.77777777730099687205E-3,
    8.33333333333331927722E-2,
]

GB = [
    -1.37825152569120859100E3,
    -3.88016315134637840924E4,
    -3.31612992738871184744E5,
    -1.16237097492762307383E6,
    -1.72173700820839662146E6,
    -8.53555664245765465627E5,
]

GC = [
    1.00000000000000000000E0,
    -3.51815701436523470549E2,
    -1.70642106651881159223E4,
    -2.20528590553854454839E5,
    -1.13933444367982507207E6,
    -2.53252307177582951285E6,
    -2.01889141433532773231E6,
]

GP = [
    1.60119522476751861407E-4,
    1.19135147006586384913E-3,
    1.04213797561761569935E-2,
    4.76367800457137231464E-2,
    2.07448227648435975150E-1,
    4.94214826801497100753E-1,
    9.99999999999999996796E-1,
]

GQ = [
    -2.31581873324120129819E-5,
    5.39605580493303397842E-4,
    -4.45641913851797240494E-3,
    1.18139785222060435552E-2,
    3.58236398605498653373E-2,
    -2.34591795718243348568E-1,
    7.14304917030273074085E-2,
    1.00000000000000000320E0,
]