1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
from __future__ import print_function
import argparse
import gc
import importlib
import inspect
import math
import random
import re
import sys
import timeit
import eventlet
import six
# legacy, TODO convert context/localhost_socket benchmarks to new way
def measure_best(repeat, iters,
common_setup='pass',
common_cleanup='pass',
*funcs):
funcs = list(funcs)
results = dict((f, []) for f in funcs)
for _ in range(repeat):
random.shuffle(funcs)
for func in funcs:
gc.collect()
t = timeit.Timer(func, setup=common_setup)
results[func].append(t.timeit(iters))
common_cleanup()
best_results = {}
for func, times in six.iteritems(results):
best_results[func] = min(times)
return best_results
class Benchmark:
func = None
name = ''
iters = 0
ns_per_op = 0
allocs_per_op = 0
mb_per_s = 0
def __init__(self, **kwargs):
for k, v in six.iteritems(kwargs):
if not hasattr(self, k):
raise AttributeError(k)
setattr(self, k, v)
def __str__(self):
kvs = ', '.join('{}={}'.format(k, v) for k, v in six.iteritems(self.__dict__) if not k.startswith('_'))
return 'Benchmark<{}>'.format(kvs)
__repr__ = __str__
def format_result(self, name_pad_to=64):
# format compatible with golang.org/x/tools/cmd/benchcmp
return "Benchmark_{b.name}{pad}\t{b.iters}\t{b.ns_per_op} ns/op".format(
b=self, pad=' ' * (name_pad_to + 1 - len(self.name)))
def run(self, repeat=5):
wrapper_time = _run_timeit(self.func, 0)
times = []
for _ in range(repeat):
t = _run_timeit(self.func, self.iters)
if t == 0.0:
raise Exception('{} time=0'.format(repr(self)))
times.append(t)
best_time = min(times) - wrapper_time
self.ns_per_op = int((best_time * 1e9) / self.iters)
def _run_timeit(func, number):
# common setup
gc.collect()
manager = getattr(func, '_benchmark_manager', None)
try:
# TODO collect allocations count, memory usage
# TODO collect custom MB/sec metric reported by benchmark
if manager is not None:
with manager(number) as ctx:
return timeit.Timer(lambda: func(ctx)).timeit(number=number)
else:
return timeit.Timer(func).timeit(number=number)
finally:
# common cleanup
eventlet.sleep(0.01)
def optimal_iters(func, target_time):
'''Find optimal number of iterations to run func closely >= target_time.
'''
iters = 1
target_time = float(target_time)
max_iters = int(getattr(func, '_benchmark_max_iters', 0))
# TODO automatically detect non-linear time growth
scale_factor = getattr(func, '_benchmark_scale_factor', 0.0)
for _ in range(10):
if max_iters and iters > max_iters:
return max_iters
# print('try iters={iters}'.format(**locals()))
t = _run_timeit(func, number=iters)
# print('... t={t}'.format(**locals()))
if t >= target_time:
return iters
if scale_factor:
iters *= scale_factor
continue
# following assumes and works well for linear complexity target functions
if t < (target_time / 2):
# roughly target half optimal time, ensure iterations keep increasing
iters = iters * (target_time / t / 2) + 1
# round up to nearest power of 10
iters = int(10 ** math.ceil(math.log10(iters)))
elif t < target_time:
# half/double dance is less prone to overshooting iterations
iters *= 2
raise Exception('could not find optimal iterations for time={} func={}'.format(target_time, repr(func)))
def collect(filter_fun):
# running `python benchmarks/__init__.py` or `python -m benchmarks`
# puts .../eventlet/benchmarks at top of sys.path, fix it to project root
if sys.path[0].endswith('/benchmarks'):
path = sys.path.pop(0)
correct = path.rsplit('/', 1)[0]
sys.path.insert(0, correct)
common_prefix = 'benchmark_'
result = []
# TODO step 1: put all toplevel benchmarking code under `if __name__ == '__main__'`
# TODO step 2: auto import benchmarks/*.py, remove whitelist below
# TODO step 3: convert existing benchmarks
for name in ('hub_timers', 'spawn'):
mod = importlib.import_module('benchmarks.' + name)
for name, obj in inspect.getmembers(mod):
if name.startswith(common_prefix) and inspect.isfunction(obj):
useful_name = name[len(common_prefix):]
if filter_fun(useful_name):
result.append(Benchmark(name=useful_name, func=obj))
return result
def noop(*a, **kw):
pass
def configure(manager=None, scale_factor=0.0, max_iters=0):
def wrapper(func):
func._benchmark_manager = manager
func._benchmark_scale_factor = scale_factor
func._benchmark_max_iters = max_iters
return func
return wrapper
def main():
cmdline = argparse.ArgumentParser(description='Run benchmarks')
cmdline.add_argument('-autotime', default=3.0, type=float, metavar='seconds',
help='''autoscale iterations close to this time per benchmark,
in seconds (default: %(default).1f)''')
cmdline.add_argument('-collect', default=False, action='store_true',
help='stop after collecting, useful for debugging this tool')
cmdline.add_argument('-filter', default='', metavar='regex',
help='process benchmarks matching regex (default: all)')
cmdline.add_argument('-iters', default=None, type=int, metavar='int',
help='force this number of iterations (default: auto)')
cmdline.add_argument('-repeat', default=5, type=int, metavar='int',
help='repeat each benchmark, report best result (default: %(default)d)')
args = cmdline.parse_args()
filter_re = re.compile(args.filter)
bs = collect(filter_re.search)
if args.filter and not bs:
# TODO stderr
print('error: no benchmarks matched by filter "{}"'.format(args.filter))
sys.exit(1)
if args.collect:
bs.sort(key=lambda b: b.name)
print('\n'.join(b.name for b in bs))
return
if not bs:
raise Exception('no benchmarks to run')
# execute in random order
random.shuffle(bs)
for b in bs:
b.iters = args.iters or optimal_iters(b.func, target_time=args.autotime)
b.run()
# print results in alphabetic order
max_name_len = max(len(b.name) for b in bs)
bs.sort(key=lambda b: b.name)
for b in bs:
print(b.format_result(name_pad_to=max_name_len))
if __name__ == '__main__':
try:
main()
except KeyboardInterrupt:
sys.exit(1)
|