1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
|
/**
* This code is released under the
* Apache License Version 2.0 http://www.apache.org/licenses/.
*
* (c) Daniel Lemire, http://lemire.me/en/
*/
#ifndef BOOLARRAY_H
#define BOOLARRAY_H
#include <cassert>
#include <iostream>
#include <iso646.h> // mostly for Microsoft compilers
#include <sstream>
#include <stdarg.h>
#include <stdexcept>
#include <vector>
#include "ewahutil.h"
namespace ewah {
/**
* A dynamic bitset implementation. (without compression).
*/
template <class uword = uint32_t> class BoolArray {
public:
BoolArray(const size_t n, const uword initval = 0)
: buffer(n / wordinbits + (n % wordinbits == 0 ? 0 : 1), initval),
sizeinbits(n) {}
BoolArray() : buffer(), sizeinbits(0) {}
BoolArray(const BoolArray &ba)
: buffer(ba.buffer), sizeinbits(ba.sizeinbits) {}
static BoolArray bitmapOf(size_t n, ...) {
BoolArray ans;
va_list vl;
va_start(vl, n);
for (size_t i = 0; i < n; i++) {
ans.set(static_cast<size_t>(va_arg(vl, int)));
}
va_end(vl);
return ans;
}
size_t sizeInBytes() const { return buffer.size() * sizeof(uword); }
void read(std::istream &in) {
sizeinbits = 0;
in.read(reinterpret_cast<char *>(&sizeinbits), sizeof(sizeinbits));
buffer.resize(sizeinbits / wordinbits +
(sizeinbits % wordinbits == 0 ? 0 : 1));
if (buffer.size() == 0)
return;
in.read(reinterpret_cast<char *>(&buffer[0]),
static_cast<std::streamsize>(buffer.size() * sizeof(uword)));
}
void readBuffer(std::istream &in, const size_t size) {
buffer.resize(size);
sizeinbits = size * sizeof(uword) * 8;
if (buffer.empty())
return;
in.read(reinterpret_cast<char *>(&buffer[0]),
buffer.size() * sizeof(uword));
}
void setSizeInBits(const size_t sizeib) { sizeinbits = sizeib; }
void write(std::ostream &out) { write(out, sizeinbits); }
void write(std::ostream &out, const size_t numberofbits) const {
const size_t size =
numberofbits / wordinbits + (numberofbits % wordinbits == 0 ? 0 : 1);
out.write(reinterpret_cast<const char *>(&numberofbits),
sizeof(numberofbits));
if (numberofbits == 0)
return;
out.write(reinterpret_cast<const char *>(&buffer[0]),
static_cast<std::streamsize>(size * sizeof(uword)));
}
void writeBuffer(std::ostream &out, const size_t numberofbits) const {
const size_t size =
numberofbits / wordinbits + (numberofbits % wordinbits == 0 ? 0 : 1);
if (size == 0)
return;
#ifdef EWAHASSERT
assert(buffer.size() >= size);
#endif
out.write(reinterpret_cast<const char *>(&buffer[0]), size * sizeof(uword));
}
size_t sizeOnDisk() const {
size_t size =
sizeinbits / wordinbits + (sizeinbits % wordinbits == 0 ? 0 : 1);
return sizeof(sizeinbits) + size * sizeof(uword);
}
BoolArray &operator=(const BoolArray &x) {
this->buffer = x.buffer;
this->sizeinbits = x.sizeinbits;
return *this;
}
bool operator==(const BoolArray &x) const {
if (sizeinbits != x.sizeinbits)
return false;
for (size_t k = 0; k < buffer.size(); ++k)
if (buffer[k] != x.buffer[k])
return false;
return true;
}
bool operator!=(const BoolArray &x) const { return !operator==(x); }
void setWord(const size_t pos, const uword val) {
#ifdef EWAHASSERT
assert(pos < buffer.size());
#endif
buffer[pos] = val;
}
void addWord(const uword val) {
if (sizeinbits % wordinbits != 0)
throw std::invalid_argument("you probably didn't want to do this");
sizeinbits += wordinbits;
buffer.push_back(val);
}
uword getWord(const size_t pos) const {
#ifdef EWAHASSERT
assert(pos < buffer.size());
#endif
return buffer[pos];
}
/**
* set to true (whether it was already set to true or not)
*/
void set(const size_t pos) {
if (pos >= sizeinbits)
padWithZeroes(pos + 1);
buffer[pos / wordinbits] |= static_cast<uword>((static_cast<uword>(1) << (pos % wordinbits)));
}
/**
* set to false (whether it was already set to false or not)
*
*/
void unset(const size_t pos) {
if (pos < sizeinbits)
buffer[pos / wordinbits] &=
~(static_cast<uword>(1) << (pos % wordinbits));
}
/**
* true of false? (set or unset)
*/
bool get(const size_t pos) const {
#ifdef EWAHASSERT
assert(pos / wordinbits < buffer.size());
#endif
return (buffer[pos / wordinbits] &
(static_cast<uword>(1) << (pos % wordinbits))) != 0;
}
/**
* set all bits to 0
*/
void reset() {
if (buffer.size() > 0)
memset(&buffer[0], 0, sizeof(uword) * buffer.size());
sizeinbits = 0;
}
size_t sizeInBits() const { return sizeinbits; }
~BoolArray() {}
/**
* Computes the logical and and writes to the provided BoolArray (out).
* The current bitmaps is unchanged.
*/
void logicaland(const BoolArray &ba, BoolArray &out) const {
if (ba.buffer.size() < buffer.size())
out.setToSize(ba);
else
out.setToSize(*this);
for (size_t i = 0; i < out.buffer.size(); ++i)
out.buffer[i] = buffer[i] & ba.buffer[i];
}
/**
* Computes the logical and and return the result.
* The current bitmaps is unchanged.
*/
BoolArray logicaland(const BoolArray &a) const {
BoolArray answer;
logicaland(a, answer);
return answer;
}
void inplace_logicaland(const BoolArray &ba) {
if (ba.buffer.size() < buffer.size())
setToSize(ba);
for (size_t i = 0; i < buffer.size(); ++i)
buffer[i] = buffer[i] & ba.buffer[i];
}
/**
* Computes the logical andnot and writes to the provided BoolArray (out).
* The current bitmaps is unchanged.
*/
void logicalandnot(const BoolArray &ba, BoolArray &out) const {
out.setToSize(*this);
size_t upto = out.buffer.size() < ba.buffer.size() ? out.buffer.size()
: ba.buffer.size();
for (size_t i = 0; i < upto; ++i)
out.buffer[i] = static_cast<uword>(buffer[i] & (~ba.buffer[i]));
for (size_t i = upto; i < out.buffer.size(); ++i)
out.buffer[i] = buffer[i];
out.clearBogusBits();
}
/**
* Computes the logical andnot and return the result.
* The current bitmaps is unchanged.
*/
BoolArray logicalandnot(const BoolArray &a) const {
BoolArray answer;
logicalandnot(a, answer);
return answer;
}
void inplace_logicalandnot(const BoolArray &ba) {
size_t upto =
buffer.size() < ba.buffer.size() ? buffer.size() : ba.buffer.size();
for (size_t i = 0; i < upto; ++i)
buffer[i] = buffer[i] & (~ba.buffer[i]);
clearBogusBits();
}
/**
* Computes the logical or and writes to the provided BoolArray (out).
* The current bitmaps is unchanged.
*/
void logicalor(const BoolArray &ba, BoolArray &out) const {
const BoolArray *smallest;
const BoolArray *largest;
if (ba.buffer.size() > buffer.size()) {
smallest = this;
largest = &ba;
out.setToSize(ba);
} else {
smallest = &ba;
largest = this;
out.setToSize(*this);
}
for (size_t i = 0; i < smallest->buffer.size(); ++i)
out.buffer[i] = buffer[i] | ba.buffer[i];
for (size_t i = smallest->buffer.size(); i < largest->buffer.size(); ++i)
out.buffer[i] = largest->buffer[i];
}
/**
* Computes the logical or and return the result.
* The current bitmaps is unchanged.
*/
BoolArray logicalor(const BoolArray &a) const {
BoolArray answer;
logicalor(a, answer);
return answer;
}
void inplace_logicalor(const BoolArray &ba) { logicalor(ba, *this); }
/**
* Computes the logical xor and writes to the provided BoolArray (out).
* The current bitmaps is unchanged.
*/
void logicalxor(const BoolArray &ba, BoolArray &out) const {
const BoolArray *smallest;
const BoolArray *largest;
if (ba.buffer.size() > buffer.size()) {
smallest = this;
largest = &ba;
out.setToSize(ba);
} else {
smallest = &ba;
largest = this;
out.setToSize(*this);
}
for (size_t i = 0; i < smallest->buffer.size(); ++i)
out.buffer[i] = buffer[i] ^ ba.buffer[i];
for (size_t i = smallest->buffer.size(); i < largest->buffer.size(); ++i)
out.buffer[i] = largest->buffer[i];
}
/**
* Computes the logical xor and return the result.
* The current bitmaps is unchanged.
*/
BoolArray logicalxor(const BoolArray &a) const {
BoolArray answer;
logicalxor(a, answer);
return answer;
}
void inplace_logicalxor(const BoolArray &ba) { logicalxor(ba, *this); }
/**
* Computes the logical not and writes to the provided BoolArray (out).
* The current bitmaps is unchanged.
*/
void logicalnot(BoolArray &out) const {
out.setToSize(*this);
for (size_t i = 0; i < buffer.size(); ++i)
out.buffer[i] = ~buffer[i];
out.clearBogusBits();
}
/**
* Computes the logical not and return the result.
* The current bitmaps is unchanged.
*/
BoolArray logicalandnot() const {
BoolArray answer;
logicalnot(answer);
return answer;
}
void inplace_logicalnot() {
for (size_t i = 0; i < buffer.size(); ++i)
buffer[i] = ~buffer[i];
clearBogusBits();
}
/**
* Returns the number of bits set to the value 1.
* The running time complexity is proportional to the
* size of the bitmap.
*
* This is sometimes called the cardinality.
*/
size_t numberOfOnes() const {
size_t count = 0;
for (size_t i = 0; i < buffer.size(); ++i) {
count += countOnes((UWORD)buffer[i]);
}
return count;
}
inline void printout(std::ostream &o = std::cout) {
for (size_t k = 0; k < sizeinbits; ++k)
o << get(k) << " ";
o << std::endl;
}
/**
* Make sure the two bitmaps have the same size (padding with zeroes
* if necessary). It has constant running time complexity.
*/
void makeSameSize(BoolArray &a) {
if (a.sizeinbits < sizeinbits)
a.padWithZeroes(sizeinbits);
else if (sizeinbits < a.sizeinbits)
padWithZeroes(a.sizeinbits);
}
/**
* Make sure the current bitmap has the size of the provided bitmap.
*/
void setToSize(const BoolArray &a) {
sizeinbits = a.sizeinbits;
buffer.resize(a.buffer.size());
}
/**
* make sure the size of the array is totalbits bits by padding with zeroes.
* returns the number of words added (storage cost increase)
*/
size_t padWithZeroes(const size_t totalbits) {
size_t currentwordsize = (sizeinbits + wordinbits - 1) / wordinbits;
size_t neededwordsize = (totalbits + wordinbits - 1) / wordinbits;
#ifdef EWAHASSERT
assert(neededwordsize >= currentwordsize);
#endif
buffer.resize(neededwordsize);
sizeinbits = totalbits;
return static_cast<size_t>(neededwordsize - currentwordsize);
}
void append(const BoolArray &a);
enum { wordinbits = sizeof(uword) * 8 };
std::vector<size_t> toArray() const {
std::vector<size_t> ans;
for (size_t k = 0; k < buffer.size(); ++k) {
uword myword = buffer[k];
while (myword != 0) {
uint32_t ntz = numberOfTrailingZeros(myword);
ans.push_back(sizeof(uword) * 8 * k + ntz);
myword ^= (static_cast<uword>(1) << ntz);
}
}
return ans;
}
/**
* Transform into a string that presents a list of set bits.
* The running time is linear in the size of the bitmap.
*/
operator std::string() const {
std::stringstream ss;
ss << *this;
return ss.str();
}
friend std::ostream &operator<<(std::ostream &out, const BoolArray &a) {
std::vector<size_t> v = a.toArray();
out << "{";
for (std::vector<size_t>::const_iterator i = v.begin(); i != v.end();) {
out << *i;
++i;
if (i != v.end())
out << ",";
}
out << "}";
return out;
return (out << static_cast<std::string>(a));
}
private:
void clearBogusBits() {
if ((sizeinbits % wordinbits) != 0) {
const uword maskbogus =
static_cast<uword>((static_cast<uword>(1) << (sizeinbits % wordinbits)) - 1);
buffer[buffer.size() - 1] &= maskbogus;
}
}
std::vector<uword> buffer;
size_t sizeinbits;
};
/**
* computes the logical or (union) between "n" bitmaps (referenced by a
* pointer).
* The answer gets written out in container. This might be faster than calling
* logicalor n-1 times.
*/
template <class uword>
void fast_logicalor_tocontainer(size_t n, const BoolArray<uword> **inputs,
BoolArray<uword> &container) {
if (n == 0) {
container.reset();
return;
}
container = *inputs[0];
for (size_t i = 0; i < n; i++) {
container.inplace_logicalor(*inputs[i]);
}
}
/**
* computes the logical or (union) between "n" bitmaps (referenced by a
* pointer).
* Returns the answer. This might be faster than calling
* logicalor n-1 times.
*/
template <class uword>
BoolArray<uword> fast_logicalor(size_t n, const BoolArray<uword> **inputs) {
BoolArray<uword> answer;
fast_logicalor_tocontainer(n, inputs, answer);
return answer;
}
template <class uword> void BoolArray<uword>::append(const BoolArray &a) {
if (sizeinbits % wordinbits == 0) {
buffer.insert(buffer.end(), a.buffer.begin(), a.buffer.end());
} else {
throw std::invalid_argument(
"Cannot append if parent does not meet boundary");
}
sizeinbits += a.sizeinbits;
}
} // namespace ewah
#endif
|