File: mapreduce_workflow.py

package info (click to toggle)
python-ewoksppf 1.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 336 kB
  • sloc: python: 2,673; makefile: 2
file content (171 lines) | stat: -rw-r--r-- 5,316 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
"""Dranspose is a WFM used at MAX-IV: https://github.com/felix-engelmann/dranspose

It runs map-reduce style workflows. This script is an example of the Ewoks equivalent.
"""

import os
import time
import random

import numpy
from silx.io import h5py_utils

from ewoksppf import execute_graph
from ewokscore.task import Task


class GenerateData(
    Task,
    input_names=["nblocks", "block_size"],
    optional_input_names=["block_index"],
    output_names=["image_stack", "block_index", "finished"],
):

    def run(self):
        t0 = time.perf_counter()
        block_index = self.get_input_value("block_index", 0)
        block_size = self.inputs.block_size
        start_value = block_index * block_size
        values = numpy.arange(start_value, start_value + block_size, dtype=numpy.int32)
        image_stack = numpy.broadcast_to(
            values.reshape(block_size, 1, 1), (block_size, 4096, 4096)
        )
        self.outputs.image_stack = image_stack.copy()
        self.outputs.block_index = block_index + 1
        self.outputs.finished = self.outputs.block_index >= self.inputs.nblocks
        t1 = time.perf_counter()
        print(f"{block_size/(t1-t0)} images/sec")


class IntegrateData(
    Task,
    input_names=["image_stack", "block_index"],
    optional_input_names=["axis", "delay"],
    output_names=["pattern_stack", "block_index"],
):

    def run(self):
        image_axis = self.get_input_value("axis", 0)
        self.outputs.pattern_stack = self.inputs.image_stack.sum(axis=image_axis + 1)
        self.outputs.block_index = self.inputs.block_index

        delay = self.get_input_value("delay", 0)
        if delay:
            time.sleep(random.uniform(delay, delay * 1.5))
        else:
            time.sleep(random.uniform(0, 0.1))


class SaveData(
    Task,
    input_names=["data_stack", "block_index", "filename"],
    output_names=["hdf5_url"],
):

    def run(self):
        filename = os.path.abspath(self.inputs.filename)
        block_index = self.inputs.block_index
        data_stack = self.inputs.data_stack
        block_size = len(data_stack)

        start_index = (block_index - 1) * block_size
        stop_index = start_index + block_size

        with h5py_utils.open_item(filename, "/", mode="a") as f:
            ndim0_required = stop_index

            # Make sure dataset exists and is large enough
            if "data" in f:
                dset = f["data"]
                if len(dset) < ndim0_required:
                    dset.resize(ndim0_required, axis=0)
            else:
                data_shape = data_stack.shape[1:]
                dset = f.create_dataset(
                    "data",
                    shape=(ndim0_required, *data_shape),
                    maxshape=(None, *data_shape),
                    dtype=data_stack.dtype,
                )

            dset[start_index:stop_index, ...] = data_stack

        self.outputs.hdf5_url = (
            f"silx://{filename}?path=/data&slice={start_index},{stop_index}"
        )
        print(f"Saved {self.outputs.hdf5_url}")


if __name__ == "__main__":
    import logging

    logging.basicConfig(level=logging.INFO)
    logging.getLogger("pypushflow").setLevel(logging.WARNING)

    nodes = [
        {
            "id": "generate",
            "task_type": "class",
            "task_identifier": "__main__.GenerateData",
        },
        {
            "id": "integrate",
            "task_type": "class",
            "task_identifier": "__main__.IntegrateData",
        },
        {
            "id": "save",
            "task_type": "class",
            "task_identifier": "__main__.SaveData",
        },
    ]
    links = [
        {
            "source": "generate",
            "target": "generate",
            "data_mapping": [
                {"source_output": "block_index", "target_input": "block_index"}
            ],
            "conditions": [{"source_output": "finished", "value": False}],
        },
        {
            "source": "generate",
            "target": "integrate",
            "data_mapping": [
                {"source_output": "image_stack", "target_input": "image_stack"},
                {"source_output": "block_index", "target_input": "block_index"},
            ],
        },
        {
            "source": "integrate",
            "target": "save",
            "data_mapping": [
                {"source_output": "pattern_stack", "target_input": "data_stack"},
                {"source_output": "block_index", "target_input": "block_index"},
            ],
        },
    ]
    workflow = {"graph": {"id": "test"}, "nodes": nodes, "links": links}
    inputs = [
        {"id": "generate", "name": "nblocks", "value": 10},
        {"id": "generate", "name": "block_size", "value": 3},
        {"id": "integrate", "name": "axis", "value": 1},
        {
            "id": "integrate",
            "name": "delay",
            "value": 0,
        },  # add fake time to integration
        {"id": "save", "name": "filename", "value": "result.h5"},
    ]

    if os.path.exists("result.h5"):
        os.unlink("result.h5")

    result = execute_graph(
        workflow,
        inputs=inputs,
        pool_type="process",  # thread, process, gevent
        scaling_workers=False,
        max_workers=16,
        raise_error=True,
    )