1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
|
"""Data Preprocessing Module.
This module contains several classes and functions that help
to handle, preprocessing and aggregate Expyriment data files.
"""
__author__ = 'Florian Krause <florian@expyriment.org>, \
Oliver Lindemann <oliver@expyriment.org>'
__version__ = '0.7.0'
__revision__ = '55a4e7e'
__date__ = 'Wed Mar 26 14:33:37 2014 +0100'
import os as _os
try:
import locale as _locale
except ImportError:
_locale = None # Does not exist on Android
import sys as _sys
import types as _types
from copy import copy as _copy
import codecs as _codecs
import re as _re
try:
import numpy as _np
except:
_np = None
from expyriment.misc import unicode2str as _unicode2str
from expyriment.misc import str2unicode as _str2unicode
def read_datafile(filename, only_header_and_variable_names=False, encoding=None):
"""Read an Expyriment data file.
Returns the data, the variable names, the subject info & the comments:
Parameters
----------
filename : str
name (fullpath) of the Expyriment data file
only_header_and_variable_names : bool, optional
if True the function reads only the header and variable names
(default=False)
Returns
-------
data : list of list
data array
variables : list of str
variable names list
subject_info : dict
dictionary with subject information (incl. date and between
subject factors)
comments : str
string with remaining comments
encoding : str, optional
the encoding with which the contents of the file will be read
"""
delimiter = ","
variables = None
subject_info = {}
comments = ""
data = []
if encoding is None:
with open(filename, 'r') as fl:
first_line = fl.readline()
encoding = _re.findall("coding[:=]\s*([-\w.]+)", first_line)
if encoding == []:
second_line = fl.readline()
encoding = _re.findall("coding[:=]\s*([-\w.]+)",
second_line)
if encoding == []:
encoding = [None]
else:
encoding = [encoding]
fl = _codecs.open(filename, 'rb', encoding[0], errors='replace')
for ln in fl:
# parse infos
ln = _str2unicode(ln.strip())
if not(ln.startswith("#")):
if variables is None:
variables = ln.split(delimiter)
if only_header_and_variable_names:
break
else:
data.append(ln.split(delimiter))
else:
if ln.startswith("#s"):
ln = ln.replace("#s", "")
tmp = ln.replace("=", ":")
tmp = tmp.split(":")
if len(tmp) == 2:
subject_info[tmp[0].strip()] = tmp[1].strip()
else:
subject_info["#s{0}".format(len(subject_info))] = ln.strip()
elif ln.startswith("#date:"):
ln = ln.replace("#date:", "")
subject_info["date"] = ln.strip()
else:
comments = comments + "\n" + ln
fl.close()
# strip variables
for x in range(len(variables)):
variables[x] = variables[x].strip()
return data, variables, subject_info, comments
def write_csv_file(filename, data, varnames=None, delimiter=','):
"""Write 2D data array to csv file.
Parameters
----------
filename : str
name (fullpath) of the data file
data : list of list
2D array with data (list of list)
varnames : list of str, optional
array of strings representing variable names
delimiter : str, optional
delimiter character (default=",")
"""
_sys.stdout.write("write file: {0}".format(filename))
try:
_locale_enc = _locale.getdefaultlocale()[1]
except:
_locale_enc = "UTF-8"
with open(filename, 'w') as f:
header = "# -*- coding: {0} -*-\n".format(
_locale_enc)
f.write(header)
if varnames is not None:
for c, v in enumerate(varnames):
if c > 0:
f.write(delimiter)
f.write(_unicode2str(v))
f.write("\n")
cnt = 0
for row in data:
for c, v in enumerate(row):
if c > 0:
f.write(delimiter)
if isinstance(v, unicode):
_unicode2str(v)
f.write(v)
cnt += 1
f.write("\n")
print " ({0} cells in {1} rows)".format(cnt, len(data))
def write_concatenated_data(data_folder, file_name, output_file=None,
delimiter=','):
"""Concatenate data and write it to a csv file.
All files that start with this name will be considered for the
analysis (cf. aggregator.data_files)
Notes
-----
The function is useful to combine the experimental data and prepare for
further processing with other software.
It basically wraps Aggregator.write_concatenated_data.
Parameters
----------
data_folder : str
folder which contains of data of the subjects (str)
file_name : str
name of the files
output_file : str, optional
name of data output file. If no specified data will the save
to {file_name}.csv
delimiter : str, optional
delimiter character (default=",")
"""
return Aggregator(data_folder=data_folder, file_name=file_name)\
.write_concatenated_data(output_file=output_file, delimiter=delimiter)
class Aggregator(object):
"""A class implementing a tool to aggregate Expyriment data.
This class is used to handle the multiple data files of a Experiment
and process (i.e, aggregate) the data for further analysis
Examples
--------
This tool helps, for instance, to aggregate your data for certain combinations
of independent variables. E.g., data of a numerical magnitude judgement
experiment. The code below makes a file with mean and median RTs and a
second file with the errors and the number of trials::
from expyriment.misc import data_preprocessing
agg = data_preprocessing.Aggregator(data_folder= "./mydata/",
file_name = "MagnitudeJudgements")
agg.set_computed_variables(["parity = target_number % 2",
"size = target_number > 65"])
agg.set_independent_variables(["hand", "size" , "parity"])
agg.set_exclusions(["trial_counter < 0",
"error != 0",
"RT < 2*std",
"RT > 2*std" # remove depending std in iv factor
# combination for each subject
])
agg.set_dependent_variables(["mean(RT)", "median(RT)"])
agg.aggregate(output_file="rts.csv")
agg.set_exclusions(["trial_counter < 0"])
agg.set_dependent_variables(["sum(error)", "n_trials"])
agg.aggregate(output_file="errors.csv")
"""
_relations = ["==", "!=", ">", "<", ">=", "<=", "=>", "<="]
_operations = ["+", "-", "*", "/", "%"]
_dv_functions = ["mean", "median", "sum", "std", "n_trials"]
_default_suffix = ".xpd"
def __init__(self, data_folder, file_name, suffix=_default_suffix):
"""Create an aggregator.
Parameters
----------
data_folder :str
folder which contains of data of the subjects
file_name : str
name of the files. All files that start with this name will
be considered for the analysis (cf. aggregator.data_files)
suffix : str, optional
if specified only files that end with this particular
suffix will be considered (default=.xpd)
"""
if type(_np) is not _types.ModuleType:
message = """Aggregator can not be initialized.
The Python package 'numpy' is not installed."""
raise ImportError(message)
_version = _np.version.version.split(".")
if not _version[0] == 1 and _version[1] < 6:
raise ImportError("Expyriment {0} ".format(__version__) +
"is not compatible with Numpy {0}.".format(
_np.version.version) +
"\nPlease install Numpy 1.6 or higher.")
print "** Expyriment Data Preprocessor **"
self.reset(data_folder, file_name, suffix)
def __str__(self):
"""Getter for the current design as text string."""
design_str = "Data\n"
design_str = design_str + u"- file name: " + self._file_name + "\n"
design_str = design_str + u"- folder: " + self._data_folder + "\n"
design_str = design_str + u"- {0} subject_data sets\n".format(
len(self._data_files))
design_str = design_str + u"- {0} variables: {1}\n".format(
len(self.variables), self.variables)
design_str = design_str + u"- recoded variables: {0}\n".format(
self._recode_txt)
design_str = design_str + u"- computed variables: {0}\n".format(
self._computes_txt)
design_str = design_str + u"Design\n"
design_str = design_str + u"- independent Variables: {0}\n".format(
self._iv_txt)
design_str = design_str + u"- dependent Variables: {0}\n".format(
self._dv_txt)
design_str = design_str + u"- exclude: {0}\n".format(
self._exclusions_txt)
return design_str
def _parse_syntax(self, syntax, throw_exception):
"""Preprocess relation and operation syntax.
Returns relation array.
"""
rels_ops = _copy(self._relations)
rels_ops.extend(self._operations)
found = None
for ro in rels_ops:
if syntax.find(ro) > 0:
found = ro
break
if found is None:
if throw_exception:
raise RuntimeError("Incorrect syntax: '{0}'".format(
_unicode2str(syntax)))
else:
return None
else:
syntax = syntax.split(found)
var_id = self._get_variable_id(syntax[0].strip(), True)
return [var_id, found, syntax[1].strip()]
def _get_variable_id(self, variables, throw_exception=False):
for cnt, v in enumerate(self.variables):
if variables == v:
return cnt
if (throw_exception):
raise RuntimeError("Unknown variable name '{0}'".format(
_unicode2str(variables)))
return None
def _add_independent_variable(self, variable):
var_id = self._get_variable_id(variable, True)
self._iv.append(var_id)
def _add_dependent_variable(self, variable):
if variable == "n_trials":
self._dv.append([variable, 0])
else:
tmp = variable.replace(")", "").split("(")
dv_fnc = tmp[0].strip()
try:
dv_txt = tmp[1].strip()
except:
raise RuntimeError(
"Incorrect syntax for DV: '{0}'".format(
_unicode2str(variable)))
var_id = self._get_variable_id(dv_txt, True)
if dv_fnc in self._dv_functions:
self._dv.append([dv_fnc, var_id])
else:
raise RuntimeError("Unknown function for dependent variable:" +
" '{0}'".format(_unicode2str(dv_fnc)))
def _add_compute_variable(self, compute_syntax):
"""Add a new variable to be computed."""
tmp = compute_syntax.replace("==", "@@") # avoid confusion = & ==
tmp = tmp.replace("!=", "##") # avoid confusion = & ==
tmp = tmp.split("=")
variable_name = tmp[0].strip()
try:
syntax = tmp[1].strip()
syntax = syntax.replace("@@", "==")
syntax = syntax.replace("##", "==")
except:
raise RuntimeError("Incorrect compute syntax: '{0}'".format(
_unicode2str(compute_syntax)))
variable_def = self._parse_syntax(syntax, throw_exception=True)
if variable_def is None:
variable_def = self._parse_operation(syntax, throw_exception=True)
if self._get_variable_id(variable_name) is not None:
raise RuntimeError("Variable already defined '{0}'".format(
_unicode2str(variable_name)))
else:
self._variables.append(variable_name)
self._computes.append([variable_name, variable_def])
def _add_exclusion(self, relation_syntax):
"""Add an exclusion."""
relation = self._parse_syntax(relation_syntax, throw_exception=True)
if relation[1] in self._relations:
self._exclusions.append(relation)
else:
raise RuntimeError("Incorrect exclusion syntax: '{0}'".format(
_unicode2str(relation_syntax)))
def _add_variable_recoding(self, recode_syntax):
"""Add a new variable recoding rule."""
error = False
tmp = recode_syntax.split(":")
if len(tmp) == 2:
var_id = self._get_variable_id(tmp[0].strip(), True)
excl_array = []
for rule in tmp[1].split(","):
rule = rule.split("=")
if len(rule) == 2:
excl_array.append([rule[0].strip(), rule[1].strip()])
else:
error = True
else:
error = True
if error:
raise RuntimeError("Incorrect recoding syntax: '{0}'".format(
_unicode2str(recode_syntax)))
else:
self._recode.append([var_id, excl_array])
def _find_idx(self, data, column_id, relation, value):
"""Find the indices of elements in a data column.
Notes
-----
It compares of column elements with a value or the elements of a second
column, if value is a name of variable.
The method deals with numerical and string comparisons and throws an
exception for invalid string comparisons.
Parameters
----------
data : numpy.array
the data
column_id : int
id of column to compare
relation : str
relation as string. possible relations:
"==", "!=", ">", "<", ">=", "<=", "=>", "<="
value : numeric or string
value to find or a variable name
"""
# is value a variable name
second_var_id = self._get_variable_id(value, False)
# _add_exclusion
try:
col = _np.float64(data[:, column_id])
except:
# handling strings
col = data[:, column_id]
try:
if second_var_id is not None:
val = _np.float64(data[:, second_var_id])
else:
val = _np.float64(value)
except:
# handling strings
if second_var_id is not None:
val = data[:, second_var_id]
else:
val = value
if value.endswith("std") and (value.find("*") > 0):
# remove relative depending std
tmp = value.split("*")
fac = float(tmp[0])
mean_stds = self._dv_mean_std(data, column_id)
idx = []
if relation not in [">", "<", "=>", ">=", "=<", "<="]:
raise RuntimeError("Incorrect syntax for " +
"exception: '{0} {1}'".format(
_unicode2str(relation),
_unicode2str(value)))
for cnt, row in enumerate(data):
#find name of combination
combi_str = self.variables[column_id]
for iv in self._iv:
if isinstance(row[iv], unicode):
_row_data = _unicode2str(row[iv])
else:
_row_data = row[iv]
combi_str = combi_str + "_" + \
"{0}{1}".format(_unicode2str(self.variables[iv]),
_row_data)
deviation = float(row[column_id]) - mean_stds[combi_str][0]
if (relation == ">" and
deviation > fac * mean_stds[combi_str][1]) or \
(relation == "=>" or relation == ">=" and
deviation >= fac * mean_stds[combi_str][1]) or \
(relation == "<" and
deviation < -fac * mean_stds[combi_str][1]) or \
(relation == "=<" or relation == "<=" and
deviation <= -fac * mean_stds[combi_str][1]):
idx.append(cnt)
return idx
else:
if relation == "!=":
comp = (col != val)
elif relation == "==":
comp = (col == val)
elif relation == "<":
comp = (col < val)
elif relation == ">":
comp = (col > val)
elif relation == "=<" or relation == "<=":
comp = (col <= val)
elif relation == "=>" or relation == ">=":
comp = (col >= val)
else:
comp = None # should never occur
if isinstance(comp, bool):
raise RuntimeError(
"Incorrect syntax for " + "exception: '{0} {1}'".format(
_unicode2str(relation), _unicode2str(value)))
return _np.flatnonzero(comp)
def _dv_mean_std(self, data, column_dv_id):
""" returns dict with std for iv_combinations """
# get all iv values
iv_values = []
for iv in self._iv:
tmp = list(set(data[:, iv]))
tmp.sort()
iv_values.append(tmp)
new_variable_names, combinations = self._get_new_variables(iv_values)
if len(combinations) == 0:
combinations = ["total"]
result = {}
for cnt, fac_cmb in enumerate(combinations):
if fac_cmb == "total":
idx = range(0, data.shape[0])
else:
# find idx of combinations
idx = None
for c, iv in enumerate(self._iv):
tmp = _np.array(data[:, iv] == fac_cmb[c])
if idx is None:
idx = tmp.copy()
else:
idx = idx & tmp
# calc std over idx
if len(idx) > 0:
result[new_variable_names[cnt+1]] = [
_np.mean(_np.float64(data[idx, column_dv_id])),
_np.std(_np.float64(data[idx, column_dv_id]))]
# ignore first new var name, which is subject_id
return result
def _get_new_variables(self, iv_values):
"""Return the new variables names and factor_combinations.
Requires the values for all independent variables iv_values: 2d array.
Adds furthermore the defined the subject variables.
"""
def increase_combination(comb, maxima, pos=None):
"""Recursive helper function.
Returns None if end reached.
"""
if pos is None:
pos = len(comb) - 1
comb[pos] += 1 # increase last position
if comb[pos] > maxima[pos]:
if pos <= 0: # end reached
return None
else:
for x in range(pos, len(comb)): # set to zero & all pos. behind
comb[x] = 0
return increase_combination(comb, maxima, pos - 1) # increase position before
else:
return comb
# calc n levels
n_levels = []
for x in iv_values:
n_levels.append(len(x) - 1)
# build new variables names
factor_combinations = []
names = []
if len(iv_values) > 0:
tmp_comb = _np.zeros(len(self._iv), dtype=int)
while tmp_comb is not None:
txt = ""
comb_values = []
for c, x in enumerate(tmp_comb):
comb_values.append(iv_values[c][x])
if len(txt) > 0:
txt = txt + "_"
txt = txt + u"{0}{1}".format(self.variables[self._iv[c]],
comb_values[-1])
names.append(txt)
factor_combinations.append(comb_values)
tmp_comb = increase_combination(tmp_comb, n_levels)
new_variable_names = ["subject_id"]
for sv in self.subject_variables:
new_variable_names.append(u"{0}".format(sv))
for dv in self._dv:
if dv[0] == "n_trials":
dv_txt = "ntr"
else:
dv_txt = self.variables[dv[1]]
if len(names) > 0:
for n in names:
new_variable_names.append(u"{0}_{1}".format(dv_txt, n))
else:
new_variable_names.append(u"{0}_total".format(dv_txt))
return new_variable_names, factor_combinations
def reset(self, data_folder, file_name, suffix=_default_suffix):
"""Reset the aggregator class and clear design.
Parameters
----------
data_folder : str
folder which contains of data of the subjects
file_name : str
name of the files. All files that start with this name
will be considered for the analysis (cf. aggregator.data_files)
suffix : str, optional
if specified only files that end with this particular suffix
will be considered (default=.xpd)
"""
self._data_folder = data_folder
self._file_name = file_name
self._data_files = []
self._variables = []
self._dv = []
self._dv_txt = []
self._iv = []
self._iv_txt = []
self._exclusions = []
self._exclusions_txt = []
self._computes = []
self._computes_txt = []
self._recode_txt = []
self._recode = []
self._subject_variables = []
self._last_data = []
self._added_data = []
self._added_variables = []
self._suffix = suffix
for flname in _os.listdir(_os.path.dirname(self._data_folder + "/")):
if flname.endswith(self._suffix) and \
flname.startswith(self._file_name):
_data, vnames, _subject_info, _comments = \
read_datafile(self._data_folder + "/" + flname)
if len(self._variables) < 1:
self._variables = vnames
else:
if vnames != self._variables:
message = u"Different variables in ".format(flname)
message = message + u"\n{0}".format(vnames)
message = message + u"\ninstead of\n{0}".format(
self._variables)
raise RuntimeError(_unicode2str(message))
self._data_files.append(flname)
if len(self._data_files) < 1:
raise Exception("No data files found in {0}".format(
_unicode2str(self._data_folder)))
print "found {0} subject_data sets".format(len(self._data_files))
print "found {0} variables: {1}".format(len(self._variables),
[_unicode2str(x) for x
in self._variables])
@property
def data_folder(self):
"""Getter for data_folder."""
return self._data_folder
@property
def data_files(self):
"""Getter for data_files.
The list of the data files considered for the analysis.
"""
return self._data_files
@property
def file_name(self):
"""Getter for file_name."""
return self._file_name
@property
def variables(self):
"""Getter for variables.
The specified variables including the new computer variables and
between subject variables and added variables.
"""
variables = _copy(self._variables)
variables.extend(self._subject_variables)
variables.extend(self._added_variables)
return variables
@property
def added_variables(self):
"""Getter for added variables."""
return self._added_variables
@property
def computed_variables(self):
"""Getter for computed variables."""
return self._computes_txt
@property
def variable_recodings(self):
"""Getter for variable recodings."""
return self._recode_txt
@property
def subject_variables(self):
"""Getter for subject variable."""
return self._subject_variables
@property
def exclusions(self):
"""Getter for exclusions."""
return self._exclusions_txt
@property
def dependent_variables(self):
"""Getter for dependent variables."""
return self._dv_txt
@property
def independent_variables(self):
"""Getter for independent_variables."""
return self._iv_txt
def get_data(self, filename, recode_variables=True,
compute_new_variables=True, exclude_trials=True):
"""Read data from from a single Expyriment data file.
Notes
-----
The function can be only applied on data of aggregator.data_files,
that is, on the files in the defined data folder that start with
the experiment name. According to the defined design, the result
contains recoded data together with the new computed variables, and the
subject variables from the headers of the Expyriment data files.
Parameters
----------
filename : str
name of the Expyriment data file
recode_variables : bool, optional
set to False if defined variable recodings should not be applied
(default=True)
compute_new_variables : bool, optional
set to False if new defined variables should not be computed
(default=True)
exclude_trials : bool, optional
set to False if exclusion rules should not be applied
(default=True)
Returns
-------
data : numpy.array
var_names : list
list of variable names
info : str
subject info
comment : str
comments in data
"""
# check filename
if filename not in self._data_files:
raise RuntimeError("'{0}' is not in the data list\n".format(
_unicode2str(filename)))
data, _vnames, subject_info, comments = \
read_datafile(self._data_folder + "/" + filename)
print " reading {0}".format(_unicode2str(filename))
if recode_variables:
for var_id, recoding in self._recode:
for old, new in recoding:
for row in range(len(data)):
if data[row][var_id] == old:
data[row][var_id] = new
data = _np.array(data, dtype='|S99')
# compute new defined variables and append
if compute_new_variables:
for new_var_name, var_def in self._computes:
if var_def[1] in self._relations:
# relations are true or false
col = _np.zeros([data.shape[0], 1], dtype=int)
idx = self._find_idx(data, var_def[0],
var_def[1], var_def[2])
col[idx, 0] = 1
else:
# operations
try:
a = _np.float64([data[:, var_def[0]]]).transpose()
second_var_id = self._get_variable_id(var_def[2],
False)
if second_var_id is not None:
b = _np.float64(
[data[:, second_var_id]]).transpose()
else:
b = _np.float64(var_def[2])
except:
msg = "Error while computing new variable {0}. " + \
"Non-number in variables of {1}"
msg.format(new_var_name, filename)
raise RuntimeError(msg)
if var_def[1] == "+":
col = a + b
elif var_def[1] == "-":
col = a - b
elif var_def[1] == "*":
col = a * b
elif var_def[1] == "/":
col = a / b
elif var_def[1] == "%":
col = a % b
data = _np.concatenate((data, col), axis=1)
# add subject information
for sv in self.subject_variables:
try:
info = subject_info[sv]
except:
info = "nan"
col = _np.array([[info for _x in range(data.shape[0])]])
data = _np.c_[data, col.transpose()]
# _add_exclusion trials
if exclude_trials:
for exl in self._exclusions:
idx = self._find_idx(data, exl[0], exl[1], exl[2])
if len(idx) > 0:
data = _np.delete(data, idx, axis=0)
var = _copy(self._variables)
var.extend(self._subject_variables)
return [data, var, subject_info, comments]
@property
def concatenated_data(self):
"""Getter for concatenated_data.
Notes
-----
Returns all data of all subjects as numpy.array and all variables
names (including added variables). According to the defined design, the
result contains the new computed variables and the subject variables
from the headers of the Expyriment data files.
If data have been loaded and no new variable or exclusion has been
defined the concatenated_data will merely return the previous data
without re-processing.
Returns
-------
data : numpy.array
variables : list of str
"""
if len(self._last_data) > 0: # data are already loaded and unchanged
cdata = self._last_data
else:
cdata = None
for flname in self._data_files:
tmp = self.get_data(flname)[0]
if cdata is None:
cdata = tmp
else:
cdata = _np.concatenate((cdata, tmp), axis=0)
self._last_data = cdata
# append added data
if len(self._added_variables) > 0:
if cdata is not None:
cdata = _np.concatenate((cdata, self._added_data), axis=1)
else:
cdata = self._added_data
return [cdata, self.variables]
def get_variable_data(self, variables):
"""Returns the column of data as numpy array.
Parameters
----------
variables : list of str
names of the variables to be extracted
Returns
-------
data : numpy.array
"""
if type(variables) != _types.ListType:
variables = [variables]
cols = []
for v in variables:
cols.append(self._get_variable_id(v, throw_exception=True))
data = self.concatenated_data[0]
try:
data = _np.float64(data[:, cols])
except:
data = data[:, cols]
return data
def add_variables(self, variable_names, data_columns):
"""Adds a new variable to the data.
Notes
-----
The amount of variables and added columns must match. The added data
must also match the number of rows. Note, manually added variables
will be lost if cases will be excluded afterwards via a call of
the method `set_exclusions`.
Parameters
----------
variable_names : str
name of the new variable(s)
data_columns : numpy.array
the new data columns as numpy array
"""
d = _np.array(data_columns)
data_shape = _np.shape(d)
if len(data_shape) < 2:
d = _np.transpose([d])
data_shape = (data_shape[0], 1)
if type(variable_names) != _types.ListType:
variable_names = [variable_names]
if len(variable_names) != data_shape[1]:
raise RuntimeError(
"Amount of variables and added colums doesn't fit.")
if data_shape[0] != _np.shape(self.concatenated_data[0])[0]:
raise RuntimeError("Number of rows doesn't match.")
self._added_variables.extend(variable_names)
if len(self._added_data) == 0:
self._added_data = d
else:
self._added_data = _np.concatenate((self._added_data, d), axis=1)
self._last_data = []
def write_concatenated_data(self, output_file=None, delimiter=','):
"""Concatenate data and write it to a csv file.
Parameters
----------
output_file : str, optional
name of data output file
If no specified data will the save to {file_name}.csv
delimiter : str
delimiter character (default=",")
"""
if output_file is None:
output_file = u"{0}.csv".format(self.file_name)
data = self.concatenated_data
write_csv_file(filename=output_file, data=data[0], varnames=data[1],
delimiter=delimiter)
def set_independent_variables(self, variables):
"""Set the independent variables.
Parameters
----------
variables : str or list
the name(s) of one or more data variables (aggregator.variables)
"""
if type(variables) != _types.ListType:
self._iv_txt = [variables]
else:
self._iv_txt = variables
self._iv = []
for v in self._iv_txt:
self._add_independent_variable(v)
self._last_data = []
def set_dependent_variables(self, dv_syntax):
"""Set dependent variables.
Parameters
----------
dv_syntax : str or list
syntax describing the dependent variable by a function and variable,
e.g. mean(RT)
Notes
-----
Syntax::
{function}({variable})
{function} -- mean, median, sum, std or n_trials
Note: n_trials counts the number of trials
and does not require a variable as argument
{variable} -- a defined data variable
"""
if type(dv_syntax) != _types.ListType:
self._dv_txt = [dv_syntax]
else:
self._dv_txt = dv_syntax
self._dv = []
for v in self._dv_txt:
self._add_dependent_variable(v)
self._last_data = []
def set_exclusions(self, rule_syntax):
"""Set rules to exclude trials from the analysis.
The method indicates the rows, which are ignored while reading
the data files. It can therefore not be applied on variables that have
been added later via `add_variables` and results in a loss of all
manually added variables. Setting exclusions requires re-reading of
the data files and might be therefore time consuming. Thus, call this
method always at the beginning of your analysis script.
Parameters
----------
rule_syntax : str or list
A string or a list of strings that represent the rules
to exclude trials
Notes
-----
Rule syntax::
{variable} {relation} {variable/value}
{variable} -- a defined data variable
{relation} -- ==, !=, >, <, >=, <=, => or <=
{value} -- string or numeric
If value is "{numeric} * std", trails are excluded in which
the variable is below or above {numeric} standard deviations
from the mean. The relations "==" and "!=" are not allow in
this case. The exclusion criterion is apply for each subject
and factor combination separately.
"""
if type(rule_syntax) != _types.ListType:
self._exclusions_txt = [rule_syntax]
else:
self._exclusions_txt = rule_syntax
self._exclusions = []
for r in self._exclusions_txt:
self._add_exclusion(r)
self._last_data = []
self._added_data = []
self._added_variables = []
def set_variable_recoding(self, recoding_syntax):
"""Set syntax to recode variables.
The method defines the variables, which will recoded. It can not
be applied on variables that have been added later via
`add_variables`. Recoding variables requires re-reading of the data
files and might be therefore time consuming.
Parameters
----------
rule_syntax : str or list
A string or a list of strings that represent the variable
recoding syntax
Notes
-----
Recoding syntax::
{variable}: {old_value1} = {new_value1}, {old_value2} = {new_value2},...
"""
if type(recoding_syntax) != _types.ListType:
self._recode_txt = [recoding_syntax]
else:
self._recode_txt = recoding_syntax
self._recode = []
for syntax in self._recode_txt:
self._add_variable_recoding(syntax)
self._last_data = []
def set_subject_variables(self, variables):
"""Set subject variables to be considered for the analysis.
The method sets the subject variables. Subject variables are between
subject factors or other variables defines in the subject information
section (#s) of the Expyriment data file. The method requires a
re-reading of the data files and might be therefore time consuming.
Parameters
----------
variables : str or list
A string or a list of strings that represent the subject
variables
"""
if type(variables) != _types.ListType:
self._subject_variables = [variables]
else:
self._subject_variables = variables
self._last_data = []
def set_computed_variables(self, compute_syntax):
"""Set syntax to compute new variables.
The method defines the variables, which will be computed. It can not
be applied on variables that have been added manually via
`add_variables`. The method requires a re-reading of the data files
and might be therefore time consuming.
Parameters
----------
compute_syntax : str or list
A string or a list of strings that represent the syntax to
compute the new variables
Notes
-----
Compute Syntax::
{new-variable} = {variable} {relation/operation} {variable/value}
{new-variable} -- a new not yet defined variable name
{variable} -- a defined data variable
{relation} -- ==, !=, >, <, >=, <=, => or <=
{operation} -- +, -, *, / or %
{value} -- string or numeric
"""
if type(compute_syntax) != _types.ListType:
self._computes_txt = [compute_syntax]
else:
self._computes_txt = compute_syntax
self._computes = []
self._variables = read_datafile(self._data_folder + "/" +
self._data_files[0],
only_header_and_variable_names=True)[1] # original variables
for syntax in self._computes_txt:
self._add_compute_variable(syntax)
self._last_data = []
def print_n_trials(self, variables):
"""Print the number of trials in the combinations of the independent
variables.
Notes
-----
The functions is for instance useful to quickly check the experimental
design.
Parameters
----------
variables : str or list
A string or a list of strings that represent the names of one or
more data variables (aggregator.variables)
"""
old_iv = self._iv
old_dv = self._dv
self.set_dependent_variables("n_trials")
self.set_independent_variables(variables)
result, varnames = self.aggregate()
for row in result:
print "Subject {0}".format(row[0])
for cnt, var in enumerate(varnames):
if cnt > 0:
if isinstance(row[cnt], unicode):
_row_data = _unicode2str(row[cnt])
else:
_row_data = row[cnt]
print "\t{0}:\t{1}".format(var[4:], _row_data)
print "\n"
self._dv = old_dv
self._iv = old_iv
def aggregate(self, output_file=None, column_subject_id=0):
"""Aggregate the data as defined by the design.
The design will be printed and the resulting data will be return as
numpy.array together with the variable names.
Parameters
----------
output_file : str, optional
name of data output file. If this output_file is defined the
function write the results as csv data file
column_subject_id : int, optional
data column containing the subject id (default=0)
Returns
-------
result : numpy.array
new_variable_names : list of strings
"""
data, _variables = self.concatenated_data
subjects = list(set(data[:, column_subject_id]))
subjects.sort()
# get all iv values
iv_values = []
for iv in self._iv:
tmp = list(set(data[:, iv]))
tmp.sort()
iv_values.append(tmp)
new_variable_names, combinations = self._get_new_variables(iv_values)
if len(combinations) == 0:
combinations = ["total"]
# calculate subject wise
result = None
for sub in subjects:
mtx = data[data[:, column_subject_id] == sub, :]
row = [sub]
# subject info
for sv in self.subject_variables:
row.append(mtx[0, self._get_variable_id(sv)])
for dv in self._dv:
for fac_cmb in combinations:
if fac_cmb == "total":
idx = range(0, mtx.shape[0])
else:
# find idx of combinations
idx = None
for c, iv in enumerate(self._iv):
tmp = _np.array(mtx[:, iv] == fac_cmb[c])
if idx is None:
idx = tmp.copy()
else:
idx = idx & tmp
# calc mean over idx
if len(idx) > 0:
values = mtx[idx, dv[1]]
if dv[0] == "median":
row.append(_np.median(_np.float64(values)))
elif dv[0] == "mean":
row.append(_np.mean(_np.float64(values)))
elif dv[0] == "sum":
row.append(_np.sum(_np.float64(values)))
elif dv[0] == "std":
row.append(_np.std(_np.float64(values)))
elif dv[0] == "n_trials":
row.append(values.shape[0])
else:
row.append(_np.NaN)
else:
row.append(_np.NaN)
if result is None:
result = _np.array([row], dtype='|S99')
else:
result = _np.r_[result, [row]]
if output_file is not None:
write_csv_file(output_file, result, new_variable_names)
return result, new_variable_names
|