File: geometry.py

package info (click to toggle)
python-expyriment 0.7.0%2Bgit34-g55a4e7e-3.2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 1,504 kB
  • ctags: 2,094
  • sloc: python: 12,766; makefile: 150
file content (308 lines) | stat: -rw-r--r-- 7,678 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
"""
The geometry module.

This module contains miscellaneous geometry functions for expyriment.

"""

__author__ = 'Florian Krause <florian@expyriment.org>, \
Oliver Lindemann <oliver@expyriment.org>'
__version__ = '0.7.0'
__revision__ = '55a4e7e'
__date__ = 'Wed Mar 26 14:33:37 2014 +0100'

import math as _math
import expyriment as _expyriment


def coordinates2position(coordinate):
    """Convert a coordinate on the screen to an expyriment position.

    Parameters
    ----------
    coordinate : (int, int)
        coordinate (x,y) to convert

    Returns
    -------
    coordinate : (int, int)

    """

    screen_size = _expyriment._active_exp.screen.surface.get_size()
    return (coordinate[0] - screen_size[0] / 2,
            - coordinate[1] + screen_size[1] / 2)

def position2coordinate(position):
    """Convert an expyriment position to a coordinate on screen.

    Parameters
    ----------
    coordinate : (int, int)
        coordinate (x,y) to convert

    Returns
    -------
    coordinate : (int, int)

    """

    screen_size = _expyriment._active_exp.screen.surface.get_size()
    return (position[0] + screen_size[0] / 2,
            - position[1] + screen_size[1] / 2)


def position2visual_angle(position, viewing_distance, monitor_size):
    """Convert an expyriment position (pixel) to a visual angle from center.

    Parameters
    ----------
    position : (int, int)
        position (x,y) to convert
    viewing_distance : numeric
        viewing distance in cm
    monitior_size : numeric
        physical size of the monitor in cm (x, y)

    Returns
    -------
    angle : (float, float)
        visual angle for x & y dimension

    """

    screen_size = _expyriment._active_exp.screen.surface.get_size()
    cm = (position[0] * monitor_size[0] / float(screen_size[0]),
          position[1] * monitor_size[1] / float(screen_size[1]))

    angle = (2.0 * _math.atan((cm[0] / 2) / viewing_distance),
             2.0 * _math.atan((cm[1] / 2) / viewing_distance))
    return (angle[0] * 180 / _math.pi, angle[1] * 180 / _math.pi)


def visual_angle2position(visual_angle, viewing_distance, monitor_size):
    """Convert an position defined as visual angle from center to expyriment
    position (pixel).

    Parameters
    ----------
    visual_angle : (numeric, numeric)
        position in visual angle (x,y) to convert
    viewing_distance : numeric
        viewing distance in cm
    monitior_size : (numeric, numeric)
        physical size of the monitor in cm (x, y)

    Returns
    -------
    position : (float, float)
        position (x,y)

    """

    screen_size = _expyriment._active_exp.screen.surface.get_size()
    angle = (visual_angle[0] * _math.pi / 360,
             visual_angle[1] * _math.pi / 360) # angle / 180 / 2
    cm = (_math.tan(angle[0]) * viewing_distance * 2,
          _math.tan(angle[1]) * viewing_distance * 2)
    return (cm[0] * screen_size[0] / monitor_size[0],
            cm[1] * screen_size[1] / monitor_size[1])


def points_to_vertices(points):
    """Returns vertex representation of the points (int, int) in xy-coordinates

    Parameters
    ----------
    points : (int, int)
        list of points

    Returns
    -------
    vtx : list
        list of vertices

    """

    vtx = []
    for i in range(1, len(points)):
        vtx.append((points[i][0] - points[i - 1][0], points[i][1] - points[i - 1][1]))
    return vtx

def lines_intersect(pa, pb, pc, pd):
    """Return true if two line segments are intersecting

    Parameters
    ----------
    pa : misc.XYPoint
        point 1 of line 1
    pb : misc.XYPoint
        point 2 of line 1
    pc : misc.XYPoint
        point 1 of line 2
    pb : misc.XYPoint
        point 2 of line 2

    Returns
    -------
    check : bool
        True if lines intersect

    """

    def ccw(pa, pb, pc):
        return (pc._y - pa._y) * (pb._x - pa._x) > (pb._y - pa._y) * (pc._x - pa._x)

    return ccw(pa, pc, pd) != ccw(pb, pc, pd) and ccw(pa, pb, pc) != ccw(pa, pb, pd)

class XYPoint:
    """ The Expyriment point class """
    def __init__(self, x=None, y=None, xy=None):
        """Initialize a XYPoint.

        Parameters
        ----------
        x : numeric
        y : numeric
        xy : (numeric, numeric)
            xy = (x,y)

        Notes
        -----
        use `x`, `y` values (two numberic) or the tuple xy=(x,y)

        """

        if x is None:
            if xy is None:
                self._x = 0
                self._y = 0
            else:
                self._x = xy[0]
                self._y = xy[1]
        elif y is None:
            #if only a tuple is specified: e-g. Point((23,23))
            self._x = x[0]
            self._y = x[1]
        else:
            self._x = x
            self._y = y

    def __repr__(self):
        return  "(x={0}, y={1})".format(self._x, self._y)

    @property
    def x(self):
        """Getter for x"""
        return self._x

    @x.setter
    def x(self, value):
        """Getter for x"""
        self._x = value

    @property
    def y(self):
        """Getter for y"""
        return self._y

    @y.setter
    def y(self, value):
        """Getter for y"""
        self._y = value

    @property
    def tuple(self):
        return (self._x, self._y)

    @tuple.setter
    def tuple(self, xy_tuple):
        self._x = xy_tuple[0]
        self._y = xy_tuple[1]

    def move(self, v):
        """Move the point along the coodinates specified by the vector v.

        Parameters
        ----------
        v : misc.XYPoint
            movement vector

        """

        self._x = self._x + v._x
        self._y = self._y + v._y
        return self

    def distance(self, p):
        """Return euclidian distance to the points (p).

        Parameters
        ----------
        p : misc.XYPoint
            movement vector

        Returns
        -------
        dist : float
            distance to other point p

        """

        dx = self._x - p._x
        dy = self._y - p._y
        return _math.sqrt((dx * dx) + (dy * dy))

    def rotate(self, degree, rotation_centre=(0, 0)):
        """Rotate the point counterclockwise in degree around rotation_centre.

        Parameters
        ----------
        degree : int
            degree of rotation (default=(0, 0) )
        rotation_center : (numeric, numeric)
            rotation center (x, y)

        """

        p = XYPoint(self._x - rotation_centre[0], self._y - rotation_centre[1])
        #cart -> polar
        ang = _math.atan2(p._x, p._y)
        r = _math.sqrt((p._x * p._x) + (p._y * p._y))
        ang = ang - ((degree / 180.0) * _math.pi);
        #polar -> cart
        self._x = r * _math.sin(ang) + rotation_centre[0]
        self._y = r * _math.cos(ang) + rotation_centre[1]
        return self


    def is_inside_polygon(self, point_list):
        """Return true if point is inside a given polygon.

        Parameters
        ----------
        point_list : list
            point list defining the polygon

        Returns
        -------
        check : bool

"""

        n = len(point_list)
        inside = False

        p1 = point_list[0]
        for i in range(n + 1):
            p2 = point_list[i % n]
            if self._y > min(p1._y, p2._y):
                if self._y <= max(p1._y, p2._y):
                    if self._x <= max(p1._x, p2._x):
                        if p1._y != p2._y:
                            xinters = (self._y - p1._y) * (p2._x - p1._x) / (p2._y - p1._y) + p1._x
                        if p1._x == p2._x or self._x <= xinters:
                            inside = not inside
            p1 = p2

        return inside