1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
#!/usr/bin/env python
#######################################
import sys
import os
import os.path
import time
#import re
import logging
# ------------------------ logging levels ------------------------------------
logging.basicConfig(level= logging.DEBUG,
format='%(module)s.%(funcName)s: %(levelname)-7s: %(message)s')
config_log = logging.INFO
# ----------------------------------------------------------------------------
#from optparse import OptionParser
from math import factorial
import numpy
from scipy import interpolate #optimize, signal
#scipy.signal.savgol_filter(x, window_length, polyorder, deriv=0, delta=1.0, axis=-1, mode='interp', cval=0.0)[source]
#from matplotlib import pylab
# ----------------------- updated funcs --------------------
def poly_fit(spectrum, user_params):
start_ix, end_ix = spectrum[0].searchsorted([user_params['from'],
user_params['to']])
if end_ix <= start_ix:
print (start_ix, end_ix)
sys.tracebacklimit = -1
raise Exception('Invalid energy bounds for fit')
fit_coeffs = numpy.polyfit(spectrum[0][start_ix:end_ix],
spectrum[1][start_ix:end_ix],
user_params['deg'])
return numpy.array([spectrum[0], numpy.polyval(fit_coeffs, spectrum[0])]), fit_coeffs
def centered_polynomial(x, *args):
# tupo
res = []
for i in range(len(x)):
res.append(numpy.dot(numpy.array([x[i]**(n+1) for n in range(len(args))]), args))
return numpy.array(res)
def poly_calc(x, *args):
#return pylab.polyval(args, x)
return numpy.polyval(args, x)
def equalstep_interp(x, y, step):
'''
ddk=numpy.diff(x)
#print 'init steps:' + str(ddk) # debug
if not(numpy.allclose(ddk[0],ddk)):
'''
if 1==1:
logging.debug(' x[0]= '+ str(x[0]) +', x[-1]= '+ str(x[-1]) +'; '+
str(len(x)) + ' points')
lin_y = interpolate.interp1d(x, y, 'linear', bounds_error=False, fill_value=0.)
x = numpy.arange(x[0], x[-1] + step, step)
y = lin_y(x)
logging.debug('interp_x[0]= '+ str(x[0]) +', interp_x[-1]= '+ str(x[-1]) +'; '+
str(len(x)) + ' points')
return x, y
# -------------------- funcs on stand by -------------------
def derivative_3points(curve):
f_diffs = curve[1,2:] - curve[1, :-2]
f_diffs = numpy.concatenate(([curve[1,1] - curve[1,0]],
f_diffs,
[curve[1,-1] - curve[1,-2]]))
x_diffs = curve[0,2:] - curve[0,:-2]
x_diffs = numpy.concatenate( ([curve[0,1] - curve[0,0]],
x_diffs,
[curve[0,-1] - curve[0,-2]]) )
return f_diffs/x_diffs
def derivative_5points(curve):
f_diffs = curve[1,4:] - curve[1, :-4]
f_diffs = numpy.concatenate(([curve[1,1] - curve[1,0]],
[curve[1,2] - curve[1,0]],
f_diffs,
[curve[1,-1] - curve[1,-3]],
[curve[1,-1] - curve[1,-2]]))
x_diffs = curve[0,4:] - curve[0,:-4]
x_diffs = numpy.concatenate( ([curve[0,1] - curve[0,0]],
[curve[0,2] - curve[0,0]],
x_diffs,
[curve[0,-1] - curve[0,-3]],
[curve[0,-1] - curve[0,-2]]) )
return f_diffs/x_diffs
def derivative_vals(curve, points_nb=5):
if points_nb == 5:
return derivative_5points(curve)
else:
return derivative_3points(curve)
def max_deriv_pos(spectrum, deriv_over=3):
'''
deriv_over how many points: 3 or 5 are available
'''
if deriv_over == 5:
deriv_vals = derivative_5points(spectrum)
else:
deriv_vals = derivative_3points(spectrum)
edge_indx = numpy.argmax(deriv_vals) # - index
return spectrum[0][edge_indx]
#http://stackoverflow.com/questions/22988882/how-to-smooth-a-curve-in-python
def savitzky_golay(y, window_size, order, deriv=0, rate=1):
import numpy as np
try:
window_size = np.abs(np.int(window_size))
order = np.abs(np.int(order))
except ValueError:
raise ValueError("window_size and order have to be of type int")
if window_size % 2 != 1 or window_size < 1:
raise TypeError("window_size size must be a positive odd number")
if window_size < order + 2:
raise TypeError("window_size is too small for the polynomials order")
order_range = range(order+1)
half_window = (window_size -1) // 2
# precompute coefficients
b = np.mat([[k**i for i in order_range] for k in range(-half_window, half_window+1)])
m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv)
#print b
#print m
# pad the signal at the extremes with
# values taken from the signal itself
firstvals = y[0] - np.abs( y[1:half_window+1][::-1] - y[0] )
lastvals = y[-1] + np.abs(y[-half_window-1:-1][::-1] - y[-1])
y = np.concatenate((firstvals, y, lastvals))
return np.convolve( m[::-1], y, mode='valid')
|