1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
FabIO: Fable Input/Output library
=================================
Main websites:
* https://github.com/silx-kit/fabio
* http://fable.sf.net (historical)
|Build Status| |Appveyor Status|
----
FabIO is an I/O library for images produced by 2D X-ray detectors and written in Python.
FabIO support images detectors from a dozen of companies (including Mar, Dectris, ADSC, Hamamatsu, Oxford, ...),
for a total of 30 different file formats (like CBF, EDF, TIFF, ...) and offers an unified interface to their
headers (as a python dictionary) and datasets (as a numpy ndarray of integers or floats)
Getting FabIO
-------------
FabIO is available from `PyPI <https://pypi.python.org/pypi/fabio>`_.
`Debian/Ubuntu packages <http://www.silx.org/pub/debian/binary/>`_, and
`wheels <http://www.silx.org/pub/wheelhouse/>`_ are available
for windows, linux and MacOSX from the silx repository:
Documentation is available at `silx <http://www.silx.org/doc/fabio/>`_.
Citation:
---------
The general philosophy of the library is described in:
`FabIO: easy access to two-dimensional X-ray detector images in Python; E. B. Knudsen, H. O. Sørensen, J. P. Wright, G. Goret and J. Kieffer Journal of Applied Crystallography, Volume 46, Part 2, pages 537-539. <http://dx.doi.org/10.1107/S0021889813000150>`_
Transparent handling of compressed files
----------------------------------------
FabIO is expected to handle gzip and bzip2 compressed files transparently.
Following a query about the performance of reading compressed data, some
benchmarking details have been collected at fabio_compressed_speed.
This means that when your python was configured and built you needed the
bzip and gzip modules to be present (eg libbz2-dev package for ubuntu)
Using fabio in your own python programs
Example::
>>> import fabio
>>> obj = fabio.edfimage.EdfImage("mydata0000.edf")
>>> obj.data.shape
(2048, 2048)
>>> obj.header["Omega"]
23.5
Design Specifications
---------------------
Name:
.....
FabIO = Fable Input/Output
Idea:
.....
Have a base class for all our 2D diffraction greyscale images.
This consists of a 2D array (numpy ndarray)
and a python dictionary (actually an ordered dict) of header information in (string key, string value) pairs.
Class FabioImage
................
Needs a name which will not to be confused with an RGB color image.
Class attributes, often exposed as properties:
* data -> 2D array
* header -> ordered dictionary
* rows, columns, dim1, dim2 -> data.shape (propertiy)
* header_keys -> property for list(header.keys()), formerly used to retain the order of the header
* bytecode -> data.typecode() (property)
* m, minval, maxval, stddev -> image statistics, could add others, eg roi[slice]
Class methods (functions):
* integrate_area() -> return sum(self.data) within slice
* rebin(fact) -> rebins data, adjusts dims
* toPIL16() -> returns a PILimage
* getheader() -> returns self.header
* resetvals() -> resets the statistics
* getmean() -> (computes) returns self.m
* getmin() -> (computes) returns self.minval
* getmax() -> (computes) returns self.maxval
* getstddev() -> (computes) returns self.stddev
* read() -> read image from file [or stream, or shared memory]
* write() -> write image to file [or stream, or shared memory]
* readheader() -> read only the header [much faster for scanning files]
Each individual file format would then inherit all the functionality of this class and just make new read and write methods.
There are also fileseries related methods (next(), previous(), ...) which returns a FabioImage instance of the next/previous frame in a fileserie
Other feature:
* possibility for using on-the-fly external compression - i.e. if files are
stored as something as .gz, .bz2 etc could decompress them, using an external
compression mechanism (if available).
Supported file formats
----------------------
* ADSC:
+ AdscImage
* Bruker:
+ BrukerImage
+ Bruker100Image
+ KcdImage: Nonius KappaCCD diffractometer
* D3M
+ D3mImage
* Dectris:
+ CbfImage (implements a fast byte offset de/compression scheme in python/cython)
+ PilatusImage (fileformat derived from Tiff)
+ EigerImage (derived from HDF5/NeXus format, depends on `h5py`)
* ESRF:
+ EdfImage: The ESRF data Format
+ XsdImage: XML serialized image from EDNA
+ Fit2dImage: Fit2d binary format
+ Fit2dmaskImage: Fit2d Mask format
+ Fit2dSpreadsheetImage: Fit2d ascii tables (spread-sheet)
+ LimaImage: image stacks written by the LImA aquisition system
+ SparseImage: single crystal diffractions images written by pyFAI
* General Electrics
+ GEimage (including support for variant used at APS)
* Hamamatsu
+ HiPiCImage
* HDF5: generic format for stack of images based on h5py
+ Hdf5Image
+ EigerImage
+ LimaImage
+ SparseImage
* JPEG image format:
+ JPEG using PIL
+ JPEG 2000 using Glymur
* Mar Research:
+ MarccdImage (fileformat derived from Tiff)
+ Mar345Image imaging plate with PCK compression
* MPA multiwire
+ MpaImage
* Medical Research Council file format for 3D electron density and 2D images
+ MrcImage
* Nonius -> now owned by Bruker
+ KcdImage
* Numpy: generic reader for 2D arrays saved
+ NumpyImage
* Oxford Diffraction Sapphire 3
+ OXDimage uncompressed or with TY1 or TY5 compression scheme
+ Esperanto format (with bitfield compression)
* Pixirad Imaging
+ PixiImage
* PNM
+ PnmImage
* Princeton Instrument SPE
+ SpeImage
* Raw Binary without compression
* Rigaku
+ RaxisImage
+ DtrekImage
* Tiff
+ TifImage using either:
- Pillow (external dependency)
- TiffIO taken from PyMca
Installation
------------
Please see doc/source/INSTALL.rst
Changelog
---------
Please see doc/source/Changelog.rst
.. |Build Status| image:: https://travis-ci.org/silx-kit/fabio.svg?branch=master
:target: https://travis-ci.org/silx-kit/fabio
.. |Appveyor Status| image:: https://ci.appveyor.com/api/projects/status/4k6lol1vq30qhf66/branch/master?svg=true
:target: https://ci.appveyor.com/project/ESRF/fabio/branch/master
|