1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
|
# coding: utf-8
#
# Project: FabIO X-ray image reader
#
# Copyright (C) 2010-2020 European Synchrotron Radiation Facility
# Grenoble, France
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
"""
Authors: Jérôme Kieffer, ESRF
email:jerome.kieffer@esrf.fr
Cif Binary Files images are 2D images written by the Pilatus detector and others.
They use a modified (simplified) byte-offset algorithm.
CIF is a library for manipulating Crystallographic information files and tries
to conform to the specification of the IUCR
"""
__author__ = "Jérôme Kieffer"
__contact__ = "jerome.kieffer@esrf.eu"
__license__ = "MIT"
__date__ = "22/10/2020"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
import os
import logging
import numpy
from collections import OrderedDict
from typing import NamedTuple
from .fabioimage import FabioImage
from .compression import compByteOffset, decByteOffset, md5sum
from .ext._cif import split_tokens
from . import version, date
logger = logging.getLogger(__name__)
__version__ = ["##CBF: VERSION 1.5, FabIO version %s (%s) - %s" % (version, date, __copyright__)]
DATA_TYPES = {"signed 8-bit integer": "int8",
"signed 16-bit integer": "int16",
"signed 32-bit integer": "int32",
"signed 64-bit integer": "int64",
"unsigned 8-bit integer": "uint8",
"unsigned 16-bit integer": "uint16",
"unsigned 32-bit integer": "uint32",
"unsigned 64-bit integer": "uint64"
}
MINIMUM_KEYS = ["X-Binary-Size-Fastest-Dimension",
"X-Binary-Size-Second-Dimension",
"X-Binary-Size",
"X-Binary-Number-of-Elements",
'X-Binary-Element-Type',
'X-Binary-Number-of-Elements']
class CbfImage(FabioImage):
"""
Read the Cif Binary File data format
"""
DESCRIPTION = "Cif Binary Files format (used by the Pilatus detectors and others)"
DEFAULT_EXTENSIONS = ["cbf"]
STARTER = b"\x0c\x1a\x04\xd5"
PADDING = 512
BINARAY_SECTION = b"--CIF-BINARY-FORMAT-SECTION--"
CIF_BINARY_BLOCK_KEY = "_array_data.data"
def __init__(self, data=None, header=None, fname=None):
"""
Constructor of the class CIF Binary File reader.
:param str fname: the name of the file to open
"""
FabioImage.__init__(self, data, header)
self.cif = CIF()
self.pilatus_headers = None
self.cbs = None
self.start_binary = None
if fname is not None: # load the file)
self.read(fname)
@staticmethod
def checkData(data=None):
if data is None:
return None
elif numpy.issubdtype(data.dtype, int):
return data
else:
return data.astype(int)
def _readheader(self, inStream):
"""
Read in a header in some CBF format from a string representing binary stuff
:param file inStream: file containing the Cif Binary part.
"""
self._read_cif_header(inStream)
self._read_binary_section_header(inStream)
def _read_cif_header(self, inStream):
"""Read in a ASCII CIF header
:param inStream: file containing the Cif Binary part.
:type inStream: opened file.
"""
blocks = []
last = ""
header_data = None
for i in range(16):
# up to 512*16 = 8k headers
ablock = inStream.read(self.PADDING)
blocks.append(ablock)
if last:
extra = len(self.BINARAY_SECTION)
extblock = last[-extra:] + ablock
else:
extra = 0
extblock = ablock
res = extblock.find(self.BINARAY_SECTION)
if res >= 0:
start_cbs = i * self.PADDING - extra + res
all_blocks = b"".join(blocks)
header_data = all_blocks[:start_cbs] + b"CIF Binary Section\n;\n"
self.cbs = all_blocks[start_cbs:]
break
last = ablock
else:
header_data = b"".join(blocks) + inStream.read()
self.cif._parseCIF(header_data)
# backport contents of the CIF data to the headers
for key, value in self.cif.items():
if key == self.CIF_BINARY_BLOCK_KEY:
if self.cbs is None:
self.cbs = value
else:
if isinstance(value, str):
value = value.strip(" \"\n\r\t")
self.header[key] = value
if self.header.get("_array_data.header_convention") == "PILATUS_1.2":
print(self.header.get("_array_data.header_contents", ""))
self.pilatus_headers = PilatusHeader(self.header.get("_array_data.header_contents", ""))
print(self.pilatus_headers)
def _read_binary_section_header(self, inStream):
"""
Read the binary section header
"""
self.start_binary = self.cbs.find(self.STARTER)
while self.start_binary < 0:
self.cbs += inStream.read(self.PADDING)
self.start_binary = self.cbs.find(self.STARTER)
bin_headers = self.cbs[:self.start_binary]
lines = bin_headers.split(b"\n")
for line in lines[1:]:
if len(line) < 10:
break
try:
key, val = line.split(b':', 1)
except ValueError:
key, val = line.split(b'=', 1)
key = key.strip().decode("ASCII")
self.header[key] = val.strip(b" \"\n\r\t").decode("ASCII")
missing = []
for item in MINIMUM_KEYS:
if item not in self.header:
missing.append(item)
if missing:
logger.info("Mandatory keys missing in CBF file: " + ", ".join(missing))
# Compute image size
try:
slow = int(self.header['X-Binary-Size-Fastest-Dimension'])
fast = int(self.header['X-Binary-Size-Second-Dimension'])
self._shape = fast, slow
except (KeyError, ValueError):
raise IOError("CBF file %s is corrupt, no dimensions in it" % inStream.name)
try:
bytecode = DATA_TYPES[self.header['X-Binary-Element-Type']]
except KeyError:
bytecode = "int32"
logger.warning("Defaulting type to int32")
self._dtype = numpy.dtype(bytecode)
def read_raw_data(self, infile):
"""Read and return the raw data chunk
:param infile: opened file are correct position
:return: raw compressed stream
"""
if self.CIF_BINARY_BLOCK_KEY not in self.cif:
err = "Not key %s in CIF, no CBF image in %s" % (self.CIF_BINARY_BLOCK_KEY, self.filename)
logger.error(err)
for kv in self.cif.items():
logger.debug("%s: %s", kv)
raise RuntimeError(err)
if self.cif[self.CIF_BINARY_BLOCK_KEY] == "CIF Binary Section":
self.cbs += infile.read(len(self.STARTER) + int(self.header["X-Binary-Size"]) - len(self.cbs) + self.start_binary)
else:
if len(self.cif[self.CIF_BINARY_BLOCK_KEY]) > int(self.header["X-Binary-Size"]) + self.start_binary + len(self.STARTER):
self.cbs = self.cif[self.CIF_BINARY_BLOCK_KEY][:int(self.header["X-Binary-Size"]) + self.start_binary + len(self.STARTER)]
else:
self.cbs = self.cif[self.CIF_BINARY_BLOCK_KEY]
return self.cbs[self.start_binary + len(self.STARTER):]
def read(self, fname, frame=None, check_MD5=True, only_raw=False):
"""Read in header into self.header and the data into self.data
:param str fname: name of the file
:return: fabioimage instance
"""
self.filename = fname
self.header = self.check_header()
self.resetvals()
infile = self._open(fname, "rb")
self._readheader(infile)
logger.debug("CBS type %s len %s" % (type(self.cbs), len(self.cbs)))
binary_data = self.read_raw_data(infile)
if only_raw:
return binary_data
if ("Content-MD5" in self.header) and check_MD5:
ref = numpy.string_(self.header["Content-MD5"])
obt = md5sum(binary_data)
if ref != obt:
logger.error("Checksum of binary data mismatch: expected %s, got %s" % (ref, obt))
if self.header["conversions"] == "x-CBF_BYTE_OFFSET":
data = numpy.ascontiguousarray(self._readbinary_byte_offset(binary_data,), self._dtype)
data.shape = self._shape
self.data = data
self._shape = None
self._dtype = None
else:
raise Exception(IOError, "Compression scheme not yet supported, please contact the author")
self.resetvals()
return self
def _readbinary_byte_offset(self, raw_bytes):
"""
Read in a binary part of an x-CBF_BYTE_OFFSET compressed image
:param str inStream: the binary image (without any CIF decorators)
:return: a linear numpy array without shape and dtype set
:rtype: numpy array
"""
dim2, dim1 = self._shape
data = decByteOffset(raw_bytes, size=dim1 * dim2, dtype=self._dtype)
assert len(data) == dim1 * dim2
return data
def write(self, fname):
"""
write the file in CBF format
:param str fname: name of the file
"""
if self.data is None:
raise RuntimeError("CBF image contains no data")
# The shape is provided by self.data
self._shape = None
dim2, dim1 = self.shape
binary_blob = compByteOffset(self.data)
dtype = "Unknown"
for key, value in DATA_TYPES.items():
if value == self.data.dtype:
dtype = key
binary_block = [b"--CIF-BINARY-FORMAT-SECTION--",
b"Content-Type: application/octet-stream;",
b' conversions="x-CBF_BYTE_OFFSET"',
b'Content-Transfer-Encoding: BINARY',
numpy.string_("X-Binary-Size: %d" % (len(binary_blob))),
b"X-Binary-ID: 1",
numpy.string_('X-Binary-Element-Type: "%s"' % (dtype)),
b"X-Binary-Element-Byte-Order: LITTLE_ENDIAN",
b"Content-MD5: " + md5sum(binary_blob),
numpy.string_("X-Binary-Number-of-Elements: %d" % (dim1 * dim2)),
numpy.string_("X-Binary-Size-Fastest-Dimension: %d" % dim1),
numpy.string_("X-Binary-Size-Second-Dimension: %d" % dim2),
b"X-Binary-Size-Padding: 1",
b"",
self.STARTER + binary_blob,
b"",
b"--CIF-BINARY-FORMAT-SECTION----"]
if "_array_data.header_contents" not in self.header:
nonCifHeaders = []
else:
nonCifHeaders = [i.strip()[2:] for i in self.header["_array_data.header_contents"].split("\n") if i.find("# ") >= 0]
for key in self.header:
if key.startswith("_"):
if key not in self.cif or self.cif[key] != self.header[key]:
self.cif[key] = self.header[key]
elif key.startswith("X-Binary-"):
pass
elif key.startswith("Content-"):
pass
elif key.startswith("conversions"):
pass
elif key.startswith("filename"):
pass
elif key in self.header:
nonCifHeaders.append("%s %s" % (key, self.header[key]))
if self.pilatus_headers is not None:
# regenerate the Pilatus header and set the convention
self.cif["_array_data.header_content"] = str(self.pilatus_headers)
self.cif["_array_data.header_convention"] = "PILATUS_1.2"
if len(nonCifHeaders) > 0:
self.cif["_array_data.header_contents"] = "\r\n".join(["# %s" % i for i in nonCifHeaders])
self.cbf = b"\r\n".join(binary_block)
block = b"\r\n".join([b"", self.CIF_BINARY_BLOCK_KEY.encode("ASCII"), b";", self.cbf, b";"])
self.cif.pop(self.CIF_BINARY_BLOCK_KEY, None)
with open(fname, "wb") as out_file:
out_file.write(self.cif.tostring(fname, "\r\n").encode("ASCII"))
out_file.write(block)
################################################################################
# CIF class
################################################################################
class CIF(dict):
"""
This is the CIF class, it represents the CIF dictionary;
and as a a python dictionary thus inherits from the dict built in class.
keys are always unicode (str in python3)
values are bytes
"""
EOL = [numpy.string_(i) for i in ("\r", "\n", "\r\n", "\n\r")]
BLANK = [numpy.string_(i) for i in (" ", "\t")] + EOL
SINGLE_QUOTE = numpy.string_("'")
DOUBLE_QUOTE = numpy.string_('"')
SEMICOLUMN = numpy.string_(';')
DOT = numpy.string_('.')
START_COMMENT = (SINGLE_QUOTE, DOUBLE_QUOTE)
BINARY_MARKER = numpy.string_("--CIF-BINARY-FORMAT-SECTION--")
HASH = numpy.string_("#")
LOOP = numpy.string_("loop_")
UNDERSCORE = ord("_")
QUESTIONMARK = numpy.string_("?")
STOP = numpy.string_("stop_")
GLOBAL = numpy.string_("global_")
DATA = numpy.string_("data_")
SAVE = numpy.string_("save_")
def __init__(self, _strFilename=None):
"""
Constructor of the class.
:param _strFilename: the name of the file to open
:type _strFilename: filename (str) or file object
"""
dict.__init__(self)
self._ordered = []
if _strFilename is not None: # load the file)
self.loadCIF(_strFilename)
def __setitem__(self, key, value):
if key not in self._ordered:
self._ordered.append(key)
return dict.__setitem__(self, key, value)
def pop(self, key, default=None):
if key in self._ordered:
self._ordered.remove(key)
return dict.pop(self, key, default)
def popitem(self, key, default=None):
if key in self._ordered:
self._ordered.remove(key)
return dict.popitem(self, key, None)
def loadCIF(self, _strFilename, _bKeepComment=False):
"""Load the CIF file and populates the CIF dictionary into the object
:param str _strFilename: the name of the file to open
:return: None
"""
own_fd = False
if isinstance(_strFilename, (bytes, str)):
if os.path.isfile(_strFilename):
infile = open(_strFilename, "rb")
own_fd = True
else:
raise RuntimeError("CIF.loadCIF: No such file to open: %s" % _strFilename)
elif "read" in dir(_strFilename):
infile = _strFilename
else:
raise RuntimeError("CIF.loadCIF: what is %s type %s" % (_strFilename, type(_strFilename)))
if _bKeepComment:
self._parseCIF(numpy.string_(infile.read()))
else:
self._parseCIF(CIF._readCIF(infile))
if own_fd:
infile.close()
readCIF = loadCIF
@staticmethod
def isAscii(text):
"""
Check if all characters in a string are ascii,
:param str text: input string
:return: boolean
:rtype: boolean
"""
try:
text.decode("ascii")
except UnicodeDecodeError:
return False
else:
return True
@classmethod
def _readCIF(cls, instream):
"""
- Check if the filename containing the CIF data exists
- read the cif file
- removes the comments
:param file instream: opened file object containing the CIF data
:return: a set of bytes (8-bit string) containing the raw data
:rtype: string
"""
if "read" not in dir(instream):
raise RuntimeError("CIF._readCIF(instream): I expected instream to be an opened file,\
here I got %s type %s" % (instream, type(instream)))
out_bytes = numpy.string_("")
for sLine in instream:
nline = numpy.string_(sLine)
pos = nline.find(cls.HASH)
if pos >= 0:
if cls.isAscii(nline):
out_bytes += nline[:pos] + numpy.string_(os.linesep)
if pos > 80:
logger.warning("This line is too long and could cause problems in PreQuest: %s", sLine)
else:
out_bytes += nline
if len(sLine.strip()) > 80:
logger.warning("This line is too long and could cause problems in PreQuest: %s", sLine)
return out_bytes
def _parseCIF(self, bytes_text):
"""
- Parses the text of a CIF file
- Cut it in fields
- Find all the loops and process
- Find all the keys and values
:param bytes_text: the content of the CIF - file
:type bytes_text: 8-bit string (str in python2 or bytes in python3)
:return: Nothing, the data are incorporated at the CIF object dictionary
:rtype: None
"""
loopidx = []
looplen = []
loop = []
fields = split_tokens(bytes_text)
logger.debug("After split got %s fields of len: %s", len(fields), [len(i) for i in fields])
for idx, field in enumerate(fields):
if field.lower() == self.LOOP:
loopidx.append(idx)
if loopidx:
for i in loopidx:
loopone, length, keys = CIF._analyseOneLoop(fields, i)
loop.append([keys, loopone])
looplen.append(length)
for i in range(len(loopidx) - 1, -1, -1):
f1 = fields[:loopidx[i]] + fields[loopidx[i] + looplen[i]:]
fields = f1
self[self.LOOP.decode("ASCII")] = loop
for i in range(len(fields) - 1):
if len(fields[i + 1]) == 0:
fields[i + 1] = self.QUESTIONMARK
if fields[i][0] == self.UNDERSCORE and fields[i + 1][0] != self.UNDERSCORE:
try:
data = fields[i + 1].decode("ASCII")
except UnicodeError:
logger.warning("Unable to decode in ascii: %s" % fields[i + 1])
data = fields[i + 1]
self[(fields[i]).decode("ASCII")] = data
@classmethod
def _splitCIF(cls, bytes_text):
"""
Separate the text in fields as defined in the CIF
:param bytes_text: the content of the CIF - file
:type bytes_text: 8-bit string (str in python2 or bytes in python3)
:return: list of all the fields of the CIF
:rtype: list
"""
fields = []
while True:
if len(bytes_text) == 0:
break
elif bytes_text[0] == cls.SINGLE_QUOTE:
idx = 0
finished = False
while not finished:
idx += 1 + bytes_text[idx + 1:].find(cls.SINGLE_QUOTE)
if idx >= len(bytes_text) - 1:
fields.append(bytes_text[1:-1].strip())
bytes_text = numpy.string_("")
finished = True
break
if bytes_text[idx + 1] in cls.BLANK:
fields.append(bytes_text[1:idx].strip())
tmp_text = bytes_text[idx + 1:]
bytes_text = tmp_text.strip()
finished = True
elif bytes_text[0] == cls.DOUBLE_QUOTE:
idx = 0
finished = False
while not finished:
idx += 1 + bytes_text[idx + 1:].find(cls.DOUBLE_QUOTE)
if idx >= len(bytes_text) - 1:
fields.append(bytes_text[1:-1].strip())
bytes_text = numpy.string_("")
finished = True
break
if bytes_text[idx + 1] in cls.BLANK:
fields.append(bytes_text[1:idx].strip())
tmp_text = bytes_text[idx + 1:]
bytes_text = tmp_text.strip()
finished = True
elif bytes_text[0] == cls.SEMICOLUMN:
if bytes_text[1:].strip().find(cls.BINARY_MARKER) == 0:
idx = bytes_text[32:].find(cls.BINARY_MARKER)
if idx == -1:
idx = 0
else:
idx += 32 + len(cls.BINARY_MARKER)
else:
idx = 0
finished = False
while not finished:
idx += 1 + bytes_text[idx + 1:].find(cls.SEMICOLUMN)
if bytes_text[idx - 1] in cls.EOL:
fields.append(bytes_text[1:idx - 1].strip())
tmp_text = bytes_text[idx + 1:]
bytes_text = tmp_text.strip()
finished = True
else:
res = bytes_text.split(None, 1)
if len(res) == 2:
first, second = bytes_text.split(None, 1)
if cls.isAscii(first):
fields.append(first)
bytes_text = second.strip()
continue
start_binary = bytes_text.find(cls.BINARY_MARKER)
if start_binary > 0:
end_binary = bytes_text[start_binary + 1:].find(cls.BINARY_MARKER) + start_binary + 1 + len(cls.BINARY_MARKER)
fields.append(bytes_text[:end_binary])
bytes_text = bytes_text[end_binary:].strip()
else:
fields.append(bytes_text)
bytes_text = numpy.string_("")
break
return fields
@classmethod
def _analyseOneLoop(cls, fields, start_idx):
"""Processes one loop in the data extraction of the CIF file
:param list fields: list of all the words contained in the cif file
:param int start_idx: the starting index corresponding to the "loop_" key
:return: the list of loop dictionaries, the length of the data
extracted from the fields and the list of all the keys of the loop.
:rtype: tuple
"""
loop = []
keys = []
i = start_idx + 1
finished = False
while not finished:
if fields[i][0] == cls.UNDERSCORE:
keys.append(fields[i])
i += 1
else:
finished = True
data = []
while True:
if i >= len(fields):
break
elif len(fields[i]) == 0:
break
elif fields[i][0] == cls.UNDERSCORE:
break
elif fields[i] in (cls.LOOP, cls.STOP, cls.GLOBAL, cls.DATA, cls.SAVE):
break
else:
data.append(fields[i])
i += 1
k = 0
if len(data) < len(keys):
element = {}
for j in keys:
if k < len(data):
element[j] = data[k]
else:
element[j] = cls.QUESTIONMARK
k += 1
loop.append(element)
else:
for i in range(len(data) // len(keys)):
element = {}
for j in keys:
element[j] = data[k]
k += 1
loop.append(element)
return loop, 1 + len(keys) + len(data), keys
##########################################
# everything needed to write a CIF file #
##########################################
def saveCIF(self, _strFilename="test.cif", linesep=os.linesep, binary=False):
"""Transforms the CIF object in string then write it into the given file
:param _strFilename: the of the file to be written
:param linesep: line separation used (to force compatibility with windows/unix)
:param binary: Shall we write the data as binary (True only for imageCIF/CBF)
:return: None
"""
if binary:
mode = "wb"
else:
mode = "w"
try:
fFile = open(_strFilename, mode)
except IOError:
logger.error("Error during the opening of file for write: %s",
_strFilename)
return
fFile.write(self.tostring(_strFilename, linesep))
try:
fFile.close()
except IOError:
logger.error("Error during the closing of file for write: %s",
_strFilename)
def tostring(self, _strFilename=None, linesep=os.linesep):
"""
Converts a cif dictionnary to a string according to the CIF syntax.
:param str _strFilename: the name of the filename to be appended in the
header of the CIF file.
:param linesep: default line separation (can be '\\n' or '\\r\\n').
:return: a string that corresponds to the content of the CIF-file.
"""
lstStrCif = ["#" + i for i in __version__]
if "_chemical_name_common" in self:
t = self["_chemical_name_common"].split()[0]
elif _strFilename is not None:
t = os.path.splitext(os.path.split(str(_strFilename).strip())[1])[0]
else:
t = ""
lstStrCif.append("data_%s" % (t))
# first of all get all the keys:
lKeys = list(self.keys())
lKeys.sort()
for key in lKeys[:]:
if key in self._ordered:
lKeys.remove(key)
self._ordered += lKeys
for sKey in self._ordered:
if sKey == "loop_":
continue
if sKey not in self:
self._ordered.remove(sKey)
logger.debug("Skipping key %s from ordered list as no more present in dict")
continue
sValue = str(self[sKey])
if sValue.find("\n") > -1: # should add value between ;;
lLine = [sKey, ";", sValue, ";", ""]
elif len(sValue.split()) > 1: # should add value between ''
sLine = "%s '%s'" % (sKey, sValue)
if len(sLine) > 80:
lLine = [str(sKey), sValue]
else:
lLine = [sLine]
else:
sLine = "%s %s" % (sKey, sValue)
if len(sLine) > 80:
lLine = [str(sKey), sValue]
else:
lLine = [sLine]
lstStrCif += lLine
if "loop_" in self:
for loop in self["loop_"]:
lstStrCif.append("loop_ ")
lKeys = loop[0]
llData = loop[1]
lstStrCif += [" %s" % (sKey) for sKey in lKeys]
for lData in llData:
sLine = " "
for key in lKeys:
sRawValue = lData[key]
if sRawValue.find("\n") > -1: # should add value between ;;
lstStrCif += [sLine, ";", str(sRawValue), ";"]
sLine = " "
else:
if len(sRawValue.split()) > 1: # should add value between ''
value = "'%s'" % (sRawValue)
else:
value = str(sRawValue)
if len(sLine) + len(value) > 78:
lstStrCif += [sLine]
sLine = " " + value
else:
sLine += " " + value
lstStrCif.append(sLine)
lstStrCif.append("")
return linesep.join(lstStrCif)
def exists(self, sKey):
"""
Check if the key exists in the CIF and is non empty.
:param str sKey: CIF key
:param cif: CIF dictionary
:return: True if the key exists in the CIF dictionary and is non empty
:rtype: boolean
"""
bExists = False
if sKey in self:
if len(self[sKey]) >= 1:
if self[sKey][0] not in (self.QUESTIONMARK, self.DOT):
bExists = True
return bExists
def existsInLoop(self, sKey):
"""
Check if the key exists in the CIF dictionary.
:param str sKey: CIF key
:param cif: CIF dictionary
:return: True if the key exists in the CIF dictionary and is non empty
:rtype: boolean
"""
if not self.exists(self.LOOP):
return False
bExists = False
if not bExists:
for i in self[self.LOOP]:
for j in i[0]:
if j == sKey:
bExists = True
return bExists
def loadCHIPLOT(self, _strFilename):
"""
Load the powder diffraction CHIPLOT file and returns the
pd_CIF dictionary in the object
:param str _strFilename: the name of the file to open
:return: the CIF object corresponding to the powder diffraction
:rtype: dictionary
"""
if not os.path.isfile(_strFilename):
errStr = "I cannot find the file %s" % _strFilename
logger.error(errStr)
raise IOError(errStr)
lInFile = open(_strFilename, "r").readlines()
self["_audit_creation_method"] = 'From 2-D detector using FIT2D and CIFfile'
self["_pd_meas_scan_method"] = "fixed"
self["_pd_spec_description"] = lInFile[0].strip()
try:
iLenData = int(lInFile[3])
except ValueError:
iLenData = None
lOneLoop = []
try:
f2ThetaMin = float(lInFile[4].split()[0])
last = ""
for sLine in lInFile[-20:]:
if sLine.strip() != "":
last = sLine.strip()
f2ThetaMax = float(last.split()[0])
limitsOK = True
except (ValueError, IndexError):
limitsOK = False
f2ThetaMin = 180.0
f2ThetaMax = 0
# print "limitsOK:", limitsOK
for sLine in lInFile[4:]:
sCleaned = sLine.split("#")[0].strip()
data = sCleaned.split()
if len(data) == 2:
if not limitsOK:
f2Theta = float(data[0])
if f2Theta < f2ThetaMin:
f2ThetaMin = f2Theta
if f2Theta > f2ThetaMax:
f2ThetaMax = f2Theta
lOneLoop.append({"_pd_meas_intensity_total": data[1]})
if not iLenData:
iLenData = len(lOneLoop)
assert (iLenData == len(lOneLoop))
self["_pd_meas_2theta_range_inc"] = "%.4f" % ((f2ThetaMax - f2ThetaMin) / (iLenData - 1))
if self["_pd_meas_2theta_range_inc"] < 0:
self["_pd_meas_2theta_range_inc"] = abs(self["_pd_meas_2theta_range_inc"])
tmp = f2ThetaMax
f2ThetaMax = f2ThetaMin
f2ThetaMin = tmp
self["_pd_meas_2theta_range_max"] = "%.4f" % f2ThetaMax
self["_pd_meas_2theta_range_min"] = "%.4f" % f2ThetaMin
self["_pd_meas_number_of_points"] = str(iLenData)
self[self.LOOP] = [[["_pd_meas_intensity_total"], lOneLoop]]
@staticmethod
def LoopHasKey(loop, key):
"Returns True if the key (string) exist in the array called loop"""
try:
loop.index(key)
return True
except ValueError:
return False
cbfimage = CbfImage
class PilatusKey(NamedTuple):
keyword: str
key_index: int=0
value_indices: list=[1]
types: list=[str]
repr: str="{}"
class PilatusHeader(object):
KEYWORDS = OrderedDict()
KEYWORDS["Detector"] = PilatusKey("Detector", 0, slice(1, None), str, "Detector: {}")
KEYWORDS["sensor"] = PilatusKey("sensor", 1, [0, 3], [str, float], "{} sensor, thickness {} m")
KEYWORDS["Pixel_size"] = PilatusKey("Pixel_size", 0, [1, 4], [float, float], "Pixel_size {} m x {} m")
KEYWORDS["Exposure_time"] = PilatusKey("Exposure_time", 0, [1], [float], "Exposure_time {} s")
KEYWORDS["Exposure_period"] = PilatusKey("Exposure_period", 0, [1], [float], "Exposure_period {} s")
KEYWORDS["Tau"] = PilatusKey("Tau", 0, [1], [float], "Tau = {} s")
KEYWORDS["Count_cutoff"] = PilatusKey("Count_cutoff", 0, [1], [int], "Count_cutoff {} counts")
KEYWORDS["Threshold_setting"] = PilatusKey("Threshold_setting", 0, [1], [float], "Threshold_setting: {} eV")
KEYWORDS["Gain_setting"] = PilatusKey("Gain_setting", 0, [1, 2], [str, str], "Gain_setting: {} {} (vrf = -0.200)")
KEYWORDS["N_excluded_pixels"] = PilatusKey("N_excluded_pixels", 0, [1], [int], "N_excluded_pixels = {}")
KEYWORDS["Excluded_pixels"] = PilatusKey("Excluded_pixels", 0, [1], [str], "Excluded_pixels: {}")
KEYWORDS["Flat_field"] = PilatusKey("Flat_field", 0, [1], [str], "Flat_field: {}")
KEYWORDS["Trim_file"] = PilatusKey("Trim_file", 0, [1], [str], "Trim_file: {}")
KEYWORDS["Image_path"] = PilatusKey("Image_path", 0, [1], [str], "Image_path: {}")
KEYWORDS["Wavelength"] = PilatusKey("Wavelength", 0, [1], [float], "Wavelength {} A")
KEYWORDS["Energy_range"] = PilatusKey("Energy_range", 0, [1, 2], [float, float], "Energy_range {} {} eV")
KEYWORDS["Detector_distance"] = PilatusKey("Detector_distance", 0, [1], [float], "Detector_distance {} m")
KEYWORDS["Detector_Voffset"] = PilatusKey("Detector_Voffset", 0, [1], [float], "Detector_Voffset {} m")
KEYWORDS["Beam_xy"] = PilatusKey("Beam_xy", 0, [1, 2], [float, float], "Beam_xy ({}, {}) pixels")
KEYWORDS["Flux"] = PilatusKey("Flux", 0, [1], [float], "Flux {}")
KEYWORDS["Filter_transmission"] = PilatusKey("Filter_transmission", 0, [1], [float], "Filter_transmission {}")
KEYWORDS["Start_angle"] = PilatusKey("Start_angle", 0, [1], [float], "Start_angle {} deg.")
KEYWORDS["Angle_increment"] = PilatusKey("Angle_increment", 0, [1], [float], "Angle_increment {} deg.")
KEYWORDS["Detector_2theta"] = PilatusKey("Detector_2theta", 0, [1], [float], "Detector_2theta {} deg.")
KEYWORDS["Polarization"] = PilatusKey("Polarization", 0, [1], [float], "Polarization {}")
KEYWORDS["Alpha"] = PilatusKey("Alpha", 0, [1], [float], "Alpha {} deg.")
KEYWORDS["Kappa"] = PilatusKey("Kappa", 0, [1], [float], "Kappa {} deg.")
KEYWORDS["Phi"] = PilatusKey("Phi", 0, [1], [float], "Phi {} deg.")
KEYWORDS["Phi_increment"] = PilatusKey("Phi_increment", 0, [1], [float], "Phi_increment {} deg.")
KEYWORDS["Chi"] = PilatusKey("Chi", 0, [1], [float], "Chi {} deg.")
KEYWORDS["Chi_increment"] = PilatusKey("Chi_increment", 0, [1], [float], "Chi_increment {} deg.")
KEYWORDS["Omega"] = PilatusKey("Omega", 0, [1], [float], "Omega {} deg.")
KEYWORDS["Omega_increment"] = PilatusKey("Omega_increment", 0, [1], [float], "Omega_increment {} deg.")
KEYWORDS["Oscillation_axis"] = PilatusKey("Oscillation_axis", 0, [1], [str], "Oscillation_axis {}")
KEYWORDS["N_oscillations"] = PilatusKey(" ('N_oscillations", 0, [1], [int], "N_oscillations {}")
KEYWORDS["Start_position"] = PilatusKey("Start_position", 0, [1], [float], "Start_position {}")
KEYWORDS["Position_increment"] = PilatusKey("Position_increment", 0, [1], [float], "Position_increment")
KEYWORDS["Shutter_time"] = PilatusKey("Shutter_time", 0, [1], [float], "Shutter_time {} s")
SPACE_LIKE = "()#:=,"
@classmethod
def clean_string(cls, input_string):
tmp = str(input_string)
for k in cls.SPACE_LIKE:
tmp = tmp.replace(k, " ")
return tmp
def __init__(self, content, convention="PILATUS_1.2"):
assert convention == "PILATUS_1.2"
self._dict = self._parse(content)
def __repr__(self):
lines = []
for key, descr in self.KEYWORDS.items():
value = self._dict.get(key)
if value is None:
continue
if isinstance(value, (list, tuple)):
line = descr.repr.format(*value)
else:
line = descr.repr.format(value)
lines.append("# " + line)
return "\n".join(lines)
def _parse(self, content):
lines = self.clean_string(content).split("\n")
dico = OrderedDict()
for line in lines:
words = line.split()
if not words:
continue
for k, v in self.KEYWORDS.items():
if words[v.key_index] == k:
if isinstance(v.types, (list, tuple)):
if len(v.value_indices) == 1:
dico[k] = v.types[0]((words[v.value_indices[0]]))
else:
dico[k] = tuple(i(words[j]) for i, j in zip(v.types, v.value_indices))
else:
if isinstance(v.value_indices, slice):
dico[k] = " ".join([v.types(i) for i in words[v.value_indices]])
else:
dico[k] = v.types(words[v.value_indices])
return dico
def __setitem__(self, key, value):
if key not in self.KEYWORDS:
logger.warning("Unknown key: %s", key)
self._dict[key] = value
def __getitem__(self, key):
return self._dict[key]
|