1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
# coding: utf-8
#
# Project: X-ray image reader
# https://github.com/silx-kit/fabio
#
#
# Copyright (C) European Synchrotron Radiation Facility, Grenoble, France
#
# Principal author: Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
"""
Author: Andy Hammersley, ESRF
Translation into python/fabio: Jon Wright, ESRF.
Writer: Jérôme Kieffer
"""
__authors__ = ["Jon Wright", "Jérôme Kieffer"]
__contact__ = "Jerome.Kieffer@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__version__ = "06/01/2015"
import io
import numpy
import struct
from .fabioimage import FabioImage
class Fit2dMaskImage(FabioImage):
""" Read and try to write Andy Hammersley's mask format """
DESCRIPTION = "Fit2d mask file format"
DEFAULT_EXTENSIONS = ["msk"]
def _readheader(self, infile):
"""
Read in a header from an already open file
"""
# 1024 bytes gives 256x32 bit integers
header = infile.read(1024)
for i, j in [(b"M", 0),
(b"A", 4),
(b"S", 8),
(b"K", 12)]:
if header[j] != i[0]:
raise Exception("Not a fit2d mask file")
fit2dhdr = numpy.frombuffer(header, numpy.int32)
# Enforce little endian
if not numpy.little_endian:
fit2dhdr.byteswap(True)
dim1 = fit2dhdr[4] # 1 less than Andy's fortran
dim2 = fit2dhdr[5]
self._shape = dim2, dim1
def read(self, fname, frame=None):
"""
Read in header into self.header and
the data into self.data
"""
fin = self._open(fname)
self._readheader(fin)
# Compute image size
self._dtype = numpy.dtype(numpy.uint8)
# integer division
dim2, dim1 = self._shape
num_ints = (dim1 + 31) // 32
total = dim2 * num_ints * 4
data = fin.read(total)
assert len(data) == total
fin.close()
# Now to unpack it
data = numpy.frombuffer(data, numpy.uint8)
if not numpy.little_endian:
data.byteswap(True)
data = numpy.reshape(data, (dim2, num_ints * 4))
result = numpy.zeros((dim2, num_ints * 4 * 8), numpy.uint8)
# Unpack using bitwise comparisons to 2**n
bits = numpy.ones((1), numpy.uint8)
for i in range(8):
temp = numpy.bitwise_and(bits, data)
result[:, i::8] = temp.astype(numpy.uint8)
bits = bits * 2
# Extra rows needed for packing odd dimensions
spares = num_ints * 4 * 8 - dim1
if spares == 0:
data = numpy.where(result == 0, 0, 1)
else:
data = numpy.where(result[:,:-spares] == 0, 0, 1)
# Transpose appears to be needed to match edf reader (scary??)
# self.data = numpy.transpose(self.data)
self.data = numpy.ascontiguousarray(data, dtype=numpy.uint8)
self.data.shape = self._shape
self._shape = None
return self
def write(self, fname):
"""
Try to write a file
"""
dim2, dim1 = self.shape
header = bytearray(b"\x00" * 1024)
header[0] = 77 # M
header[4] = 65 # A
header[8] = 83 # S
header[12] = 75 # K
header[24] = 1 # 1
header[16:20] = struct.pack("<I", dim1)
header[20:24] = struct.pack("<I", dim2)
compact_array = numpy.zeros((dim2, ((dim1 + 31) // 32) * 4), dtype=numpy.uint8)
large_array = numpy.zeros((dim2, ((dim1 + 31) // 32) * 32), dtype=numpy.uint8)
large_array[:dim2,:dim1] = (self.data != 0)
for i in range(8):
order = (1 << i)
compact_array += large_array[:, i::8] * order
with self._open(fname, mode="wb") as outfile:
outfile.write(bytes(header))
if isinstance(outfile, io.BufferedWriter):
compact_array.tofile(outfile)
else:
outfile.write(compact_array.tobytes())
@staticmethod
def check_data(data=None):
if data is None:
return None
else:
return (data != 0).astype(numpy.uint8)
fit2dmaskimage = Fit2dMaskImage
|