File: fit2dmaskimage.py

package info (click to toggle)
python-fabio 0.11.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 9,092 kB
  • sloc: python: 19,244; ansic: 1,085; makefile: 219; sh: 215
file content (156 lines) | stat: -rw-r--r-- 5,334 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# coding: utf-8
#
#    Project: X-ray image reader
#             https://github.com/silx-kit/fabio
#
#
#    Copyright (C) European Synchrotron Radiation Facility, Grenoble, France
#
#    Principal author:       Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#

"""
Author: Andy Hammersley, ESRF
Translation into python/fabio: Jon Wright, ESRF.
Writer: Jérôme Kieffer
"""

__authors__ = ["Jon Wright", "Jérôme Kieffer"]
__contact__ = "Jerome.Kieffer@esrf.fr"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__version__ = "06/01/2015"

import io
import numpy
import struct

from .fabioimage import FabioImage


class Fit2dMaskImage(FabioImage):
    """ Read and try to write Andy Hammersley's mask format """

    DESCRIPTION = "Fit2d mask file format"

    DEFAULT_EXTENSIONS = ["msk"]

    def _readheader(self, infile):
        """
        Read in a header from an already open file
        """
        # 1024 bytes gives 256x32 bit integers
        header = infile.read(1024)
        for i, j in [(b"M", 0),
                     (b"A", 4),
                     (b"S", 8),
                     (b"K", 12)]:
            if header[j] != i[0]:
                raise Exception("Not a fit2d mask file")
        fit2dhdr = numpy.frombuffer(header, numpy.int32)
        # Enforce little endian
        if not numpy.little_endian:
            fit2dhdr.byteswap(True)
        dim1 = fit2dhdr[4]  # 1 less than Andy's fortran
        dim2 = fit2dhdr[5]
        self._shape = dim2, dim1

    def read(self, fname, frame=None):
        """
        Read in header into self.header and
            the data   into self.data
        """
        fin = self._open(fname)
        self._readheader(fin)
        # Compute image size
        self._dtype = numpy.dtype(numpy.uint8)

        # integer division
        dim2, dim1 = self._shape
        num_ints = (dim1 + 31) // 32
        total = dim2 * num_ints * 4
        data = fin.read(total)
        assert len(data) == total
        fin.close()

        # Now to unpack it
        data = numpy.frombuffer(data, numpy.uint8)
        if not numpy.little_endian:
            data.byteswap(True)

        data = numpy.reshape(data, (dim2, num_ints * 4))

        result = numpy.zeros((dim2, num_ints * 4 * 8), numpy.uint8)

        # Unpack using bitwise comparisons to 2**n
        bits = numpy.ones((1), numpy.uint8)
        for i in range(8):
            temp = numpy.bitwise_and(bits, data)
            result[:, i::8] = temp.astype(numpy.uint8)
            bits = bits * 2
        # Extra rows needed for packing odd dimensions
        spares = num_ints * 4 * 8 - dim1
        if spares == 0:
            data = numpy.where(result == 0, 0, 1)
        else:
            data = numpy.where(result[:,:-spares] == 0, 0, 1)
        # Transpose appears to be needed to match edf reader (scary??)
        # self.data = numpy.transpose(self.data)
        self.data = numpy.ascontiguousarray(data, dtype=numpy.uint8)
        self.data.shape = self._shape
        self._shape = None
        return self

    def write(self, fname):
        """
        Try to write a file
        """
        dim2, dim1 = self.shape
        header = bytearray(b"\x00" * 1024)
        header[0] = 77  # M
        header[4] = 65  # A
        header[8] = 83  # S
        header[12] = 75  # K
        header[24] = 1  # 1
        header[16:20] = struct.pack("<I", dim1)
        header[20:24] = struct.pack("<I", dim2)
        compact_array = numpy.zeros((dim2, ((dim1 + 31) // 32) * 4), dtype=numpy.uint8)
        large_array = numpy.zeros((dim2, ((dim1 + 31) // 32) * 32), dtype=numpy.uint8)
        large_array[:dim2,:dim1] = (self.data != 0)
        for i in range(8):
            order = (1 << i)
            compact_array += large_array[:, i::8] * order
        with self._open(fname, mode="wb") as outfile:
            outfile.write(bytes(header))
            if isinstance(outfile, io.BufferedWriter):
                compact_array.tofile(outfile)
            else:
                outfile.write(compact_array.tobytes())

    @staticmethod
    def check_data(data=None):
        if data is None:
            return None
        else:
            return (data != 0).astype(numpy.uint8)


fit2dmaskimage = Fit2dMaskImage