1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
|
# coding: utf-8
#
# Project: X-ray image reader
# https://github.com/silx-kit/fabio
#
#
# Copyright (C) European Synchrotron Radiation Facility, Grenoble, France
#
# Principal author: Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE
"""
Authors:
........
* Henning O. Sorensen & Erik Knudsen:
Center for Fundamental Research: Metal Structures in Four Dimensions;
Risoe National Laboratory;
Frederiksborgvej 399;
DK-4000 Roskilde;
email:erik.knudsen@risoe.dk
* Jon Wright, Jérôme Kieffer & Gaël Goret:
European Synchrotron Radiation Facility;
Grenoble (France)
Supports Mar345 imaging plate and Mar555 flat panel
Documentation on the format is available from:
http://rayonix.com/site_media/downloads/mar345_formats.pdf
"""
__authors__ = ["Henning O. Sorensen", "Erik Knudsen", "Jon Wright", "Jérôme Kieffer"]
__date__ = "03/04/2020"
__status__ = "production"
__copyright__ = "2007-2009 Risoe National Laboratory; 2010-2020 ESRF"
__licence__ = "MIT"
import struct
import time
import logging
import numpy
import fabio
from .fabioimage import FabioImage
logger = logging.getLogger(__name__)
from .compression import compPCK, decPCK
class Mar345Image(FabioImage):
_need_a_real_file = True
DESCRIPTION = "File format from Mar345 imaging plate and Mar555 flat panel"
DEFAULT_EXTENSIONS = ["mar2300", "mar1200", "mar1600", "mar2000", # 150µm pixel size
"mar3450", "mar3000", "mar2400", "mar1800"] # 100µm pixel size
def __init__(self, *args, **kwargs):
FabioImage.__init__(self, *args, **kwargs)
self.numhigh = None
self.numpixels = None
self.swap_needed = None
def read(self, fname, frame=None):
""" Read a mar345 image"""
self.filename = fname
f = self._open(self.filename, "rb")
self._readheader(f)
if 'compressed' in self.header['Format']:
dim2, dim1 = self._shape
self.data = decPCK(f, dim1, dim2, self.numhigh, swap_needed=self.swap_needed)
self._shape = None
else:
logger.error("Cannot handle these formats yet due to lack of documentation")
return None
self._bytecode = numpy.uint32
f.close()
return self
def _readheader(self, infile=None):
""" Read a mar345 image header """
# clip was not used anywhere - commented out
# clip = '\x00'
# using a couple of local variables inside this function
f = infile
h = {}
# header is 4096 bytes long
data = f.read(64)
# the contents of the mar345 header is taken to be as
# described in
# http://www.mar-usa.com/support/downloads/mar345_formats.pdf
# the first 64 bytes are 4-byte integers (but in the CBFlib
# example image it seems to 128 bytes?)
# first 4-byte integer is a marker to check endianness
if struct.unpack("<i", data[0:4])[0] == 1234:
fs = '<i'
self.swap_needed = not(numpy.little_endian)
logger.debug("Going for little endian, swap_needed %s" % self.swap_needed)
else:
self.swap_needed = numpy.little_endian
fs = '>i'
logger.debug("Going for big endian, swap_needed %s" % self.swap_needed)
# image dimensions
dim1 = int(struct.unpack(fs, data[4:8])[0])
# number of high intensity pixels
self.numhigh = struct.unpack(fs, data[2 * 4: (2 + 1) * 4])[0]
h['NumHigh'] = self.numhigh
# Image format
i = struct.unpack(fs, data[3 * 4: (3 + 1) * 4])[0]
if i == 1:
h['Format'] = 'compressed'
elif i == 2:
h['Format'] = 'spiral'
else:
h['Format'] = 'compressed'
logger.warning("image format could not be determined" +
"- assuming compressed mar345")
# collection mode
h['Mode'] = {0: 'Dose', 1: 'Time'}[struct.unpack(fs, data[4 * 4:(4 + 1) * 4])[0]]
# total number of pixels
self.numpixels = struct.unpack(fs, data[5 * 4:(5 + 1) * 4])[0]
h['NumPixels'] = str(self.numpixels)
dim2 = self.numpixels // dim1
self._shape = dim2, dim1
# pixel dimensions (length,height) in mm
h['PixelLength'] = struct.unpack(fs, data[6 * 4:(6 + 1) * 4])[0] / 1000.0
h['PixelHeight'] = struct.unpack(fs, data[7 * 4:(7 + 1) * 4])[0] / 1000.0
# x-ray wavelength in AA
h['Wavelength'] = struct.unpack(fs, data[8 * 4:(8 + 1) * 4])[0] / 1000000.0
# used distance
h['Distance'] = struct.unpack(fs, data[9 * 4:(9 + 1) * 4])[0] / 1000.0
# starting and ending phi
h['StartPhi'] = struct.unpack(fs, data[10 * 4:11 * 4])[0] / 1000.0
h['EndPhi'] = struct.unpack(fs, data[11 * 4:12 * 4])[0] / 1000.0
# starting and ending omega
h['StartOmega'] = struct.unpack(fs, data[12 * 4:13 * 4])[0] / 1000.0
h['EndOmega'] = struct.unpack(fs, data[13 * 4:14 * 4])[0] / 1000.0
# Chi and Twotheta angles
h['Chi'] = struct.unpack(fs, data[14 * 4:15 * 4])[0] / 1000.0
h['TwoTheta'] = struct.unpack(fs, data[15 * 4:16 * 4])[0] / 1000.0
# the rest of the header is ascii
# TODO: validate these values against the binaries already read
data = f.read(128)
if b'mar research' not in data:
logger.warning("the string \"mar research\" should be in " +
"bytes 65-76 of the header but was not")
start = 128
else:
start = data.index(b'mar research')
f.seek(64 + start)
data = f.read(4096 - start - 64).strip()
for m in data.splitlines():
try:
m = m.decode("ASCII")
except UnicodeDecodeError:
if m.startswith(b"DATE"):
m = m[:39].decode("ASCII")
else:
logger.warning("Skip binary trash on header line %s" % m)
continue
if m == 'END OF HEADER':
break
n = m.split(' ', 1)
if n[0] == '':
continue
if n[0] in ('PROGRAM', 'DATE', 'SCANNER', 'HIGH', 'MULTIPLIER',
'GAIN', 'WAVELENGTH', 'DISTANCE', 'RESOLUTION',
'CHI', 'TWOTHETA', 'MODE', 'TIME', 'GENERATOR',
'MONOCHROMATOR', 'REMARK'):
logger.debug("reading: %s %s", n[0], n[1])
h[n[0]] = n[1].strip()
continue
if n[0] in ('FORMAT'):
(h['DIM'], h['FORMAT_TYPE'], h['NO_PIXELS']) = n[1].split()
continue
if n[0] in ('PIXEL', 'OFFSET', 'PHI', 'OMEGA', 'COUNTS',
'CENTER', 'INTENSITY', 'HISTOGRAM', 'COLLIMATOR'):
n = m.split()
h.update([(n[0] + '_' + n[j], n[j + 1]) for j in range(1, len(n), 2)])
continue
self.header = h
return h
def write(self, fname):
"""Try to write mar345 file.
It uses a MIT implementation of the CCP4 (LGPL) PCK1 algo from JPA"""
bin_headers = self.binary_header()
asc_headers = self.ascii_header("\n", 4096 - len(bin_headers)).encode("ASCII")
hotpixels = self._high_intensity_pixel_records()
compressed_stream = compPCK(self.data)
with self._open(fname, mode="wb") as outfile:
outfile.write(bin_headers)
outfile.write(asc_headers)
outfile.write(hotpixels)
outfile.write(compressed_stream)
outfile.close()
def binary_header(self):
"""
:return: Binary header of mar345 file
"""
dim2, dim1 = self.shape
self.header["HIGH"] = str(self.nb_overflow_pixels())
binheader = numpy.zeros(16, "int32")
binheader[0] = 1234
binheader[1] = dim1
binheader[2] = self.nb_overflow_pixels()
binheader[3] = 1
binheader[4] = (self.header.get("MODE", "TIME") == "TIME")
binheader[5] = dim1 * dim2
binheader[6] = int(self.header.get("PIXEL_LENGTH", 1))
binheader[7] = int(self.header.get("PIXEL_HEIGHT", 1))
binheader[8] = int(float(self.header.get("WAVELENGTH", 1)) * 1e6)
binheader[9] = int(float(self.header.get("DISTANCE", 1)) * 1e3)
binheader[10] = int(float(self.header.get("PHI_START", 1)) * 1e3)
binheader[11] = int(float(self.header.get("PHI_END", 1)) * 1e3)
binheader[12] = int(float(self.header.get("OMEGA_START", 1)) * 1e3)
binheader[13] = int(float(self.header.get("OMEGA_END", 1)) * 1e3)
binheader[14] = int(float(self.header.get("CHI", 1)) * 1e3)
binheader[15] = int(float(self.header.get("TWOTHETA", 1)) * 1e3)
self.header["HIGH"] = str(binheader[2])
if self.swap_needed:
binheader.byteswap(True)
return binheader.tobytes()
def ascii_header(self, linesep="\n", size=4096):
"""
Generate the ASCII header for writing
:param linesep: end of line separator
:param size: size of the header (without the binary header)
:return: string (unicode) containing the mar345 header
"""
version = fabio.version
lnsep = len(linesep)
dim2, dim1 = self.shape
lstout = ['mar research'.ljust(64 - lnsep)]
lstout.append("PROGRAM".ljust(15) + (str(self.header.get("PROGRAM", "FabIO Version %s" % (version))).ljust(49 - lnsep)))
lstout.append("DATE".ljust(15) + (str(self.header.get("DATE", time.ctime()))).ljust(49 - lnsep))
key = "SCANNER"
if key in self.header:
lstout.append(key.ljust(15) + str(self.header[key]).ljust(49 - lnsep))
key = "FORMAT_TYPE"
if key in self.header:
lstout.append("FORMAT".ljust(15) + ("%s %s %s" % (dim1, self.header[key], dim1 * dim2)).ljust(49 - lnsep))
key = "HIGH"
if key in self.header:
lstout.append(key.ljust(15) + str(self.header[key]).ljust(49 - lnsep))
key1 = "PIXEL_LENGTH"
key2 = "PIXEL_HEIGHT"
if (key1 in self.header) and (key2 in self.header):
lstout.append("PIXEL".ljust(15) + ("LENGTH %s HEIGHT %s" % (self.header[key1], self.header[key2])).ljust(49 - lnsep))
key1 = "OFFSET_ROFF"
key2 = "OFFSET_TOFF"
if key1 in self.header and key2 in self.header:
lstout.append("OFFSET".ljust(15) + ("ROFF %s TOFF %s" % (self.header[key1], self.header[key2])).ljust(49 - lnsep))
key = "MULTIPLIER"
if key in self.header:
lstout.append(key.ljust(15) + str(self.header[key]).ljust(49 - lnsep))
key = "GAIN"
if key in self.header:
lstout.append(key.ljust(15) + str(self.header[key]).ljust(49 - lnsep))
key = "WAVELENGTH"
if key in self.header:
lstout.append(key.ljust(15) + str(self.header[key]).ljust(49 - lnsep))
key = "DISTANCE"
if key in self.header:
lstout.append(key.ljust(15) + str(self.header[key]).ljust(49 - lnsep))
key = "RESOLUTION"
if key in self.header:
lstout.append(key.ljust(15) + str(self.header[key]).ljust(49 - lnsep))
key1 = "PHI_START"
key2 = "PHI_END"
key3 = "PHI_OSC"
if (key1 in self.header) and (key2 in self.header) and (key3 in self.header):
lstout.append("PHI".ljust(15) + ("START %s END %s OSC %s" % (self.header[key1], self.header[key2], self.header[key3])).ljust(49 - lnsep))
key1 = "OMEGA_START"
key2 = "OMEGA_END"
key3 = "OMEGA_OSC"
if (key1 in self.header) and (key2 in self.header) and (key3 in self.header):
lstout.append("OMEGA".ljust(15) + ("START %s END %s OSC %s" % (self.header[key1], self.header[key2], self.header[key3])).ljust(49 - lnsep))
key = "CHI"
if key in self.header:
lstout.append(key.ljust(15) + str(self.header[key]).ljust(49 - lnsep))
key = "TWOTHETA"
if key in self.header:
lstout.append(key.ljust(15) + str(self.header[key]).ljust(49 - lnsep))
key1 = "CENTER_X"
key2 = "CENTER_Y"
if (key1 in self.header) and (key2 in self.header):
lstout.append("CENTER".ljust(15) + ("X %s Y %s" % (self.header[key1], self.header[key2])).ljust(49 - lnsep))
key = "MODE"
if key in self.header:
lstout.append(key.ljust(15) + str(self.header[key]).ljust(49 - lnsep))
key = "TIME"
if key in self.header:
lstout.append(key.ljust(15) + str(self.header[key]).ljust(49 - lnsep))
key1 = "COUNTS_START"
key2 = "COUNTS_END"
key3 = "COUNTS_NMEAS"
if key1 in self.header and key2 in self.header and key3 in self.header:
lstout.append("COUNTS".ljust(15) + ("START %s END %s NMEAS %s" % (self.header[key1], self.header[key2], self.header[key3])).ljust(49 - lnsep))
key1 = "COUNTS_MIN"
key2 = "COUNTS_MAX"
if key1 in self.header and key2 in self.header:
lstout.append("COUNTS".ljust(15) + ("MIN %s MAX %s" % (self.header[key1], self.header[key2])).ljust(49 - lnsep))
key1 = "COUNTS_AVE"
key2 = "COUNTS_SIG"
if key1 in self.header and key2 in self.header:
lstout.append("COUNTS".ljust(15) + ("AVE %s SIG %s" % (self.header[key1], self.header[key2])).ljust(49 - lnsep))
key1 = "INTENSITY_MIN"
key2 = "INTENSITY_MAX"
key3 = "INTENSITY_AVE"
key4 = "INTENSITY_SIG"
if key1 in self.header and key2 in self.header and key3 in self.header and key4 in self.header:
lstout.append("INTENSITY".ljust(15) + ("MIN %s MAX %s AVE %s SIG %s" % (self.header[key1], self.header[key2], self.header[key3], self.header[key4])).ljust(49 - lnsep))
key1 = "HISTOGRAM_START"
key2 = "HISTOGRAM_END"
key3 = "HISTOGRAM_MAX"
if key1 in self.header and key2 in self.header and key3 in self.header:
lstout.append("HISTOGRAM".ljust(15) + ("START %s END %s MAX %s" % (self.header[key1], self.header[key2], self.header[key3])).ljust(49 - lnsep))
key = "GENERATOR"
if key in self.header:
lstout.append(key.ljust(15) + str(self.header[key]).ljust(49 - lnsep))
key = "MONOCHROMATOR"
if key in self.header:
lstout.append(key.ljust(15) + str(self.header[key]).ljust(49 - lnsep))
key1 = "COLLIMATOR_WIDTH"
key2 = "COLLIMATOR_HEIGHT"
if key1 in self.header and key2 in self.header:
lstout.append("COLLIMATOR".ljust(15) + ("WIDTH %s HEIGHT %s" % (self.header[key1], self.header[key2])).ljust(49 - lnsep))
key = "REMARK"
if key in self.header:
lstout.append(key.ljust(15) + str(self.header[key]).ljust(49 - lnsep))
else:
lstout.append(key.ljust(64 - lnsep))
key = "END OF HEADER"
lstout.append(key)
return linesep.join(lstout).ljust(size)
def _high_intensity_pixel_records(self):
flt_data = self.data.flatten()
pix_location = numpy.where(flt_data > 65535)[0]
nb_pix = pix_location.size
if nb_pix % 8 == 0:
tmp = numpy.zeros((nb_pix, 2), dtype="int32")
else:
tmp = numpy.zeros(((nb_pix // 8 + 1) * 8, 2), dtype="int32")
tmp[:nb_pix, 0] = pix_location + 1
tmp[:nb_pix, 1] = flt_data[pix_location]
if self.swap_needed:
tmp.byteswap(True)
return tmp.tobytes()
def nb_overflow_pixels(self):
return (self.data > 65535).sum()
@staticmethod
def checkData(data=None):
if data is None:
return None
else:
# enforce square image
shape = data.shape
assert len(shape) == 2, "image has 2 dimensions"
mshape = max(shape)
z = numpy.zeros((mshape, mshape), dtype=int)
z[:shape[0], :shape[1]] = data
return z
mar345image = Mar345Image
|