1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
# -*- coding: utf-8 -*-
#cython: embedsignature=True, language_level=3
## This is for optimisation
#cython: boundscheck=False, wraparound=False, cdivision=True, initializedcheck=False,
## This is for developping:
##cython: profile=True, warn.undeclared=True, warn.unused=True, warn.unused_result=False, warn.unused_arg=True
#
# Project: Fable Input/Output
# https://github.com/silx-kit/fabio
#
# Copyright (C) 2020-2020 European Synchrotron Radiation Facility, Grenoble, France
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
"""Densification of sparse frame format
"""
__author__ = "Jérôme Kieffer"
__date__ = "02/06/2022"
__contact__ = "Jerome.kieffer@esrf.fr"
__license__ = "MIT"
import time
import numpy
# from cython.parallel import prange
from libc.stdint cimport int8_t, uint8_t, \
uint16_t, int16_t,\
int32_t, uint32_t,\
int64_t, uint64_t
from libc.math cimport isfinite, log, sqrt, cos, M_PI
from libc.stdlib cimport RAND_MAX
cimport cython
ctypedef fused any_t:
double
float
int8_t
uint8_t
uint16_t
int16_t
int32_t
uint32_t
int64_t
uint64_t
#Few constants for 64-bit Mersenne Twisters
cdef:
uint32_t NN = 312
uint32_t MM = 156
uint64_t MATRIX_A = 0xB5026F5AA96619E9ULL
uint64_t UM = 0xFFFFFFFF80000000ULL # Most significant 33 bits
uint64_t LM = 0x7FFFFFFFULL #Least significant 31 bits
double NRM53 = 1.0 / ((1<<53)-1) #Normalisation for 53 bit integer
double EPS64 = numpy.finfo(numpy.float64).eps
double TWO_PI = 2.0 * M_PI
cdef class MT:
"""
This class implements 64-bit Mersenne Twisters
http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/VERSIONS/C-LANG/mt19937-64.c
Inspired from:
https://github.com/ananswam/cython_random
with minor clean-ups
Licence: MIT
"""
cdef:
uint64_t mt[312]
uint32_t mti
uint64_t mag01[2]
bint has_spare
double spare
def __init__(self, seed):
self.mti = NN + 1
self._seed(<uint64_t> seed)
cdef inline void _seed(self, uint64_t seed) nogil:
self.mt[0] = seed
for self.mti in range(1, NN):
self.mt[self.mti] = (6364136223846793005ULL * (self.mt[self.mti-1] ^ (self.mt[self.mti-1] >> 62)) + self.mti)
self.mag01[0] = 0ULL
self.mag01[1] = MATRIX_A
self.mti = NN
self.has_spare = False
cdef inline uint64_t genrand64(self) nogil:
cdef:
uint32_t i
uint64_t x
if self.mti >= NN:
for i in range(NN - MM):
x = (self.mt[i]&UM) | (self.mt[i+1]&LM)
self.mt[i] = self.mt[i+MM] ^ (x>>1) ^ self.mag01[int(x&1ULL)]
for i in range(NN-MM, NN-1):
x = (self.mt[i]&UM)|(self.mt[i+1]&LM)
self.mt[i] = self.mt[i+(MM-NN)] ^ (x>>1) ^ self.mag01[int(x&1ULL)]
x = (self.mt[NN-1]&UM)|(self.mt[0]&LM)
self.mt[NN-1] = self.mt[MM-1] ^ (x>>1) ^ self.mag01[int(x&1ULL)]
self.mti = 0
x = self.mt[self.mti]
self.mti += 1
x ^= (x >> 29) & 0x5555555555555555ULL
x ^= (x << 17) & 0x71D67FFFEDA60000ULL
x ^= (x << 37) & 0xFFF7EEE000000000ULL
x ^= (x >> 43);
return x
def rand(self):
return self.genrand64()%(<uint64_t>RAND_MAX+1)
@cython.cdivision(True)
cdef inline double _uniform(self) nogil:
return (self.genrand64() >> 11) * NRM53
def uniform(self):
"Return a random value between [0:1["
return self._uniform()
cdef inline double _normal_bm(self, double mu, double sigma) nogil:
"Box-Muller implementation of the normal distribution"
cdef:
double u1=0.0, u2=0.0
while (u1 == 0.0):
u1 = self._uniform()
u2 = self._uniform()
return sigma * sqrt(-2.0 * log(u1)) * cos(TWO_PI * u2) + mu;
cdef inline double _normal_m(self, double mu, double sigma) nogil:
"Marsaglia implementation of the normal distribution, 2xfaster than Box-Muller"
cdef:
double u1=0.0, u2=0.0, s=0.0
if self.has_spare:
self.has_spare = False
return mu + self.spare * sigma
else:
while (s>=1 or s==0.0):
u1 = 2.0 * self._uniform() - 1.0
u2 = 2.0 * self._uniform() - 1.0
s = u1 * u1 + u2 * u2;
s = sqrt(-2.0*log(s)/s)
self.spare = u2 * s
self.has_spare = True
return mu + sigma * u1 * s;
def normal(self, mu, sigma):
"""
Calculate the gaussian distribution using the Marsaglia algorithm
Credits:
https://en.wikipedia.org/wiki/Marsaglia_polar_method
https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform
:param mu: the center of the distribution
:param sigma: the width of the distribution
:return: random value
"""
return self._normal_m(mu, sigma)
def distribution_uniform_mtc(shape, seed=None):
"Function to test uniform distribution"
if seed is None:
try:
seed = time.time_ns()
except:
seed = int(time.time()*1e9)
cdef:
uint64_t size = numpy.prod(shape), idx
double[::1] ary = numpy.empty(size)
MT mt = MT(seed)
with nogil:
for idx in range(size):
ary[idx] = mt._uniform()
return numpy.asarray(ary).reshape(shape)
def distribution_normal_mtc(mu, sigma, seed=None):
"Function to test normal distribution"
shape = mu.shape
assert mu.shape == sigma.shape
if seed is None:
try:
seed = time.time_ns()
except:
seed = int(time.time()*1e9)
cdef:
uint64_t size = numpy.prod(shape), idx
double[::1] ary = numpy.empty(size)
double[::1] cmu = numpy.ascontiguousarray(mu, dtype=numpy.float64).ravel()
double[::1] csigma = numpy.ascontiguousarray(sigma, dtype=numpy.float64).ravel()
MT mt = MT(seed)
with nogil:
for idx in range(size):
ary[idx] = mt._normal_m(cmu[idx], csigma[idx])
return numpy.asarray(ary).reshape(shape)
def densify(cython.floating[:,::1] mask,
cython.floating[::1] radius,
uint32_t[::1] index,
any_t[::1] intensity,
any_t dummy,
dtype,
float[::1] background,
float[::1] background_std=None,
normalization=None,
seed = None):
"""
Densify a sparse representation to generate a normal frame
:param mask: 2D array with NaNs for mask and pixel radius for the valid pixels
:param radius: 1D array with the radial distance
:param background: 1D array with the background values at given distance from the center
:param index: position of non-background pixels
:param intensity: intensities of non background pixels (at index position)
:param dummy: numerical value for masked-out pixels in dense image
:param dtype: dtype of intensity.
:param background_std: 1D array with the background std at given distance from the center --> activates the noisy mode.
:param normalization: normalization array: renormalize all data with this factor (pixel-wise)
:param seed: seed for the random number-generator, used only when regenerating noisy background
:return: dense frame as 2D array
"""
cdef:
Py_ssize_t i, j, size, pos, size_over, width, height
double value, fres, fpos, idelta, start, std
bint integral, noisy, do_normalization=False
any_t[:, ::1] dense
float[:,::1] c_normalization
MT mt
size = radius.shape[0]
assert background.shape[0] == size
size_over = index.shape[0]
assert intensity.shape[0] == size_over
integral = numpy.issubdtype(dtype, numpy.integer)
height =mask.shape[0]
width = mask.shape[1]
dense = numpy.zeros((height, width), dtype=dtype)
if normalization is not None:
do_normalization = True
c_normalization = numpy.ascontiguousarray(normalization, dtype=numpy.float32)
if background_std is None:
noisy = False
else:
noisy=True
if seed is None:
try:
seed = time.time_ns()
except Exception:
seed = int(time.time()*1e9)
mt = MT(seed)
with nogil:
start = radius[0]
idelta = <double>(size - 1)/(radius[size-1] - start)
#Linear interpolation
for i in range(height):
for j in range(width):
fpos = (mask[i,j] - start)*idelta
if (fpos<0) or (fpos>=size) or (not isfinite(fpos)):
dense[i,j] = dummy
else:
pos = <uint32_t> fpos
if pos+1 == size:
value = background[pos]
fres = 0.0
else:
fres = fpos - pos
value = (1.0 - fres)*background[pos] + fres*background[pos+1]
if noisy:
if pos+1 == size:
std = background_std[pos]
fres = 0.0
else:
std = (1.0 - fres)*background_std[pos] + fres*background_std[pos+1]
value = max(0.0, mt._normal_m(value, std))
if do_normalization:
value *= c_normalization[i, j]
if integral:
dense[i,j] = <any_t>(value + 0.5) #this is rounding
else:
dense[i,j] = <any_t>(value)
# Assignment of outliers
for i in range(size_over):
j = index[i]
dense[j//width, j%width] = intensity[i]
return numpy.asarray(dense)
|